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Abstract: This paper deals with the problem of characterizing and stabilizing
periodic orbits of a 1-DOF hopping robot moving over a nonlinear compliant surface.
It is shown, through implicit calculations of the Poincare map, that globally stable
periodic motions are possible via the injection of nonlinear damping.
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1. INTRODUCTION

The system considered is the classic simple point
mass bouncing on a surface or equivalently, an
idealized 1-dof hopping robot. The objective of
this work is to introduce compliance in the
robot/ground interface in order to control the
interaction. The model can be seen as a rigid robot
bouncing on a compliant surface or a compliant
robot bouncing on a rigid surface.

The current work stems from our efforts in the
modeling and control of legged robots. While
modeling a legged robot it is important to recall
its principal differences with a conventional ma-
nipulator arm, the differences which are of funda-
mental importance but are sometimes overlooked
and, in our opinion, not sufficiently emphasized.
While a conventional manipulator arm is perma-
nently rigidly fixed to the ground, a legged robot
is not. More importantly the “constraint” between
the robot foot and the ground is unilateral. Thus
given appropriate joint torques the robot is free
to leave the ground, which is an impossibility for
a conventional arm.

There are two common lines of approach in treat-
ing the interaction of such a robot with the
ground. The first is a rigid body approach where
both the robot and the ground are idealized rigid
bodies. A second approach, the one adopted here,
is the modeling of the interaction as a compliant
phenomenon. In this approach, we typically place

a spring/damper module on one of the two inter-
acting objects. The advantage of this model is that
it has continuous dynamics governed completely
by differential equations and can be used to sim-
ulate a variety of interacting surfaces by changing
the spring/damper coefficients.

In case of interactions involving non-zero rela-
tive velocities between the interacting objects a
linear damper produces a discontinuous jump in
the interaction force during the first contact, a
phenomenon which cannot be physically justified.
Also, traditional spring-damper elements, which
are active both in extension and compression,
cannot correctly model the ground contact of ei-
ther a bouncing ball or a legged robot since they
would generate artificial tension forces pulling the
interacting objects towards each other.

In order to rectify the two first problem, we adopt
the use of non-linear spring-damper elements fol-
lowing (?) and (Marhefka and Orin., April 1996).
The authors of both of these articles focus on the
performance of the non-linear models in terms
of their dynamic behavior. We use the model,
in addition, to formulate simple control laws to
stabilize a simple one-degree of freedom hopping
robot about a desired periodic orbit. The char-
acteristics of the walking robot is preserved here
through the restriction of allowing only positive
feedback. Given the height of jump altitude, the
employed control law tries to bring the robot to



the bouncing trajectory. In this paper we present
a control law that globally stabilizes the robot
to any arbitrary jump altitude. We present two
alternative controllers: a dead-beat feedback and
an asymptotic one.

Raibert performed a detailed theoretical and prac-
tical investigation of the hopping robot (Raibert,
1986) and was capable of establishing a stable
vertical hopping motion of the robot. Several the-
oretical studies, chiefly those from the groups of
Koditschek (Koditschek and Buehler, 1991) and
Burdick(A.F. et al., 1991)(McCloskey and Bur-
dick., April 1991) followed from this. (Ahmadi
and Buehler., April 1995) studied passive dynamic
running with a simple hopping robot model simi-
lar to the ones mentioned above. This model takes
advantage of tuned passive elements, in addition
to the actuators to run economically. The pro-
posed controller can stabilize any desired robot
speed. (Francois and Samson., April 1994) con-
sidered the problem of creating constant-energy
gaits of hopping robots.

2. MODELS

The dynamics of the hopping robot may be writ-
ten as follow:

mo=-mg+u+F u>0 (1)

where m is the masse, v i1s the velocity of the
robot, g is the gravity, u € R¥ is the control input,
and F' is the contact force.

Nonlinear contact models for compliant surfaces
have been introduced in works of (Hunt and
Crossley, 1975), and studied further in Marhefka
and Orin’ 96, to cope with the following draw-
backs of the simple linear spring/damper model:

e the model is physically incoherent since in-
teracting bodies may exert tensile forces on
another before separation,

e the equivalent restitution coefficient depends
upon the masses of the colliding bodies and
not on the impact velocities,

e contact force is discontinuous at the moment
of impact.

A quite general nonlinear contact model is (Hunt

and Crossley, 1975) is:
F = —Mz|"v—klz|" 'z (2)

where I is the contact force, v = 2 is the velocity,
x the position, and A, k are positive constants.
The surface x = 0 represents the contact surface.
The power n > 1 is used to model different geome-
tries of contact (i.e. a sphere impacting a Hertzian
plate ; n = 2/3). Two interesting properties have
been demonstrated with this model (Marhefka
and Orin’ 96):

/
R

Flg 1. Natural dissipative motion.

A

S

L

X

Flg 2. Accessible set of output velocities by positive
damping injection.

(i) consider a body of mass m, in contact with
a surface modeled by (1) and (2), i. e.

mi + Mz + klz|" e = 0, z<0

then the position x can be solved explicitly
as a function of the actual velocity v, the
contact velocity v;, and the contact position

i
z = ¢(zi, v, v) (3)
2_ [72m(n—|— ) (Sa(v— vi) —21In ‘ 2~ 3o )
902k 2 — 3av

()] T (4)

where o = (2/3k)A.
(it) For small aw;, the equivalent restitution coef-
ficient e,can be approximated as e &~ 1 — aw;.

The complete system can be written as:

) —g if >0

= 1
v —(=Mz|™ = klz|"le +u) —g if <0 5)
m

where # = 0 describes the contact surface, and
u € R*t. Note that the control u, u > 0 can
only apply forces in the upward direction and
that no control action is possible during the flight
phase. This is a common factor in the walking
mechanisms where the degree of freedom between
feet and ground is not actuated.

3. INVARTANT PERIODIC ORBITS

The control philosophy underlined in this paper
consists first in the characterization, via an inner-
feedback loop, of an invariant periodic orbit, and



then to design, through an outer-feedback loop, a
control strategy to stabilize such an orbit.

Since model (5) can only dissipate energy during
the contact phases ( the map v — —F is dissi-
pative), and energy is preserved during the free
motion phases, it is clear that “natural” periodic
orbits (with v = 0 ) cannot exist. This can be
seen by writing the following energy-like positive
continuous function V'

mgx + 0.5mv? if >0

= k
mgx + 0.5mv? + ——|z|" T if 2 <0 (6)
n+1

which has its time-derivative evaluated along the
solutions (continuous) of (5) given as

if 2>0

: 0
V= { —Mz|"v? if £ <0 Q)

It is convenient to split the state-space into three
disjoint subsets in R?,

Dpe=A{(z,v): x>0}
Dy ={(z,v): 2 <0,v <0}
Dea={(z,v) 12 <0,v >0}

(8)
()
(10)

This state-space partition is shown in Fig(1)(2),
together with the phase diagram of a natural
dissipative motion (u = 0). In this figure vy and
v; stands for the exit velocity and the entrance
velocity, respectively. x4 is the desired altitude
of the periodic motion. Note that to reach x4 it
s necessary to inject energy via uw > 0 during
the contact phases. However, this is only possible
during the motion in D,y due to the restriction of
the positive sign of the control action.

For this we consider that u be given as:

;\z(vi)

u=g-+ |z|"v >0 if (z,v) € Dea(11)

where the first term compensates for the gravity
and the second term is a nonlinear damper used to
inject the precise amount of energy to ensure that
vy = —v;. Note that ;\z(vi) > 0 is constant during
the contact phase, but it depends on the entrance
velocity resulting from the free fall starting at x,.
The nonlinear term in u is homogeneous to the
nonlinear damper of the contact surface. Hence
the total damper coefficient Ay (v;) = ;\z(vi) —
A can be virtually modified within the following
bounds: —A < A5 < o0.

With this first inner-loop, the closed-loop equa-
tion becomes,

f1($av) =—g lf (x,v), S Dnc
1
fa(z,v) E(—/\|x|nv — k’|a:|"_1x)
if (2,v), € D¢y
1
fa(x,v) = —(Xz(vi)]z["v — kx| )
if (2,v), € Deo

Problem 3.1. (Eristence of invariant periodic or-
bits). Let vq be the desired entrance velocity cor-
responding to the desired jump altitude, and as-
sume that x(0) = z4. An invariant orbit does
exist, if an entrance velocity-dependent constant
Aa(v;) > 0, can be found such that the exit velocity
v, be equal to the entrance desired velocity vy, 1.e.
Vo = —V; = Vq.

The natural system motion is defined as being a
particular case of the above closed-loop equation
with Aa = —A, ( or equivalent v = 0), and is
characterized by the explicit map ¢(-) : v — x,
V(2,v) € De1 U Doy

z = ¢(vi,v)

the exit velocity resulting from this natural dissi-
pative motion, namely v,, can be computed from
the implicit equation

0= ¢(UZ', {)o)
which results in v, < v;.

By injecting a positive damping, as described by
the last equation (12), or equivalent by changing
Ao within the allowed range determined above, we
can enlarge the set of accessible output velocities
U, to the open set [6,, 00), which, by construction,
includes v;. This property is shown in Figure (2),
and it can be demonstrated as follows.

With this controller, the motion in contact is

explicitly characterized by the maps ¢; : v — =
in Dep and ¢o : v — xin Deo, 1.6,
x=¢1(vi, 2i,v) = ¢1(vi, 0,v) (13)
l‘:¢)2(A2,{),i‘,v)I¢>2(/\2,0,i’,v) (14)

where v = 0,z are the values of v and =z, respec-
tively, when crossing from D.; to D.y at v = 0.
The contact position is z;. In spite of the switching
from —A — Ay when crossing from D, to D.s, the
functions fao(z,v), f3(x,v), are such that:

hH}_ {fa(z,v)} =

T = T
’U—)O+

Hence the system solutions as well the maps ¢;(+)
are continuous. We can thus concatenate these
maps and write © = ¢q 0 ¢, Y(2,v) € Dg U
D.s. Following the above notation we have that
= ¢1(v;,0,v), from which we get,

(12)

lim, {fs(z,v)} = k2"~



l‘:qf)z(Az,O,i‘, U) (15)
:¢2(A2a0a¢1(via0av)av) (16)
éq)(AZaviav) (17)

The problem is now to find A5, such that it solves
the implicit equation (17) evaluated at = 0,
v = —u;, le.,

0 = <I>(/\2,vi,—vi) (18)

which is equivalent to solving for ag = (2/3k) A2,
in the following transcendental equation:

aag +bas —In(2+ ba2)2 +2In2=0 (19)

2
v; < 0 @ = (2/3k)A. By inspection of (19), we
can see that for the suitable range of Ay > 0,
this function is continuous and it has the unique
solution Ay = A. This solution corresponds to a
symmetric positive damping injection, where the
energy lost during motion in D,y is recovered in
D.s by just inverting the sign Ay. An example of
an invariant motion is shown in Fig. (3) with a
bold line, where motion is confined to the shown
orbit. This nominal orbit will be denoted in the

sequel as

with a = # {30[1}2' +In (m)z}, and b = —3v;,

z=0"(v) = ®(Aa, v;, )]

Vi=—vUgA2=A)

where A% is the value of Ay that solves for (19) with
v; = —v4. The problem considered in this section
is to add a correction term to the nominal control
(11) such as to render attractive the invariant
orbit & = ®*(v). For this we consider the following
structure for u > 0
— M|9L’|"v if (z,v),€ Dy
m

u = (20)

AQ (’U,)
m

g+ |z|"v if (2,v),€ Dea

where A\; > 0, Ay > 0. The control u is always
positive, since the v is negative in D.; and positive
in D.y. However due to this sign restriction on
the control input, it is not possible to make the
desired orbit # = ®*(v) attractive in the usual
sense. Instead, it is possible (as it will be shown in
the following subsection), to find A1 and Ao, such
that the exit velocity series {v,(k)} converges to
desired value vy, i.e.

Uo(k) = —v; (k) = vo(k — 1) = vg

This can be performed either in one cycle or
asymptotically, as studied next.

3.1 Dead-beat Control

With the controller (20), the closed-loop equations
now become:

x=P*(x)

s

//////1/‘
D)

Fig. 3. Accessible sets in the (z — v)-plane, and nominal
orbit.

fi(z,v) = —g if (z,v),€ Dpe
Fo(,0) = (o]0 — k|2 o)
b= "t (2,v), € Doy (21)
o) = —(ale|"v — klo|? ")
" if (z,v),€ Deo

with A; € [-A, —00), A2 € [, 00) . By modifying
these constant with the allowed sets, we can have
the following properties:

(#4i) The point & = ®7(0) is accessible from any
v; € [—vg4, —00), for motions in Dey.

(iv) The value of the exit velocity v, = wvq is
accessible from any z € (0,—Z], on the axe
v = 0, for motions in D.s.

Property (i7) results from the ability of dissipat-
ing arbitrarily large amounts of energy in D.q,
while Property (iv) comes from the fact that en-
ergy can be injected in D.1. Then, the shaded area
shown in Figure (3) represents the state space
domain where energy can be either dissipate or
injected throughout positive feedback.

These properties are equivalent to finding Aj, Ag
such that the following relationships hold:

z = ¢1(M(vi),v,0), if v € [—vg, —00), (22)
0= ¢2(/\2(1’C)71’67Ud)7 if zc€ (Ovi’]v (23)

where x. i1s the position when crossing the
velocity-axis while in contact. In case that the
initial contact velocity v;, is smaller in magnitude
than vy, the value of Ay is set to be the natural
system damping since there is no need to add
more dissipation. Therefore, the maps (22)-(23)
are completely defined for any value of v;, i.e.

1 (A1 (vi),v,0) = 7 if v; € [—vg, —00)

ve = (24)
#1(A,v4,0), if v € (—vg,0)

0= ¢2(/\2(73c)773cvvd) if . € (077?’], (25)

Since the ¢1-map projects all the contact veloc-
ities to the bounded set (0, Z], there is no theo-
retical need to consider the case where z. > Z.
However, if this happens, due to possible model
uncertainties, then A, is set to be equal to —A,
which will have the effect to bring the system



motion towards the interior of the desired orbit

z = ®*(v).

As before ¢4, ¢5 are continuous and can be con-
catenated to get @ = @20 @1, V(2,v) € Dy U Dea,
or equivalent,

T = ¢2(A2a Le, U)
= ¢o(Aa, P1(A1, v, v), V)
2 (A1, Aa, 1, 0) (26)

Equations (24)-(25) imply that we are able to find
A1, Ag such that it solves the implicit equation (26)
evaluated at x = 0, v = —vy for all bounded v;,
ie.

0 = <I>(/\1,/\2,vi,vd) (27)

The solution studied in the previous section is a
particular case of the above problem. Solution for
A1, in the Equation (24) as well as the solution for
A2, in the Equation (25) are involved (except if
x. = &, in which case the solution is Ay = A), and
need to be solved numerically by a root finding
algorithm. However, these solutions do exist and
are uniquely defined.

We can now consider the Poincaré section S(z,v) =
{(z,v)]x = 0,v > 0}. The Poincaré map between
the exit velocity at time instant ¢t = k—1, v, (k—1),
and the exit velocity at the time ¢t = k, v,(k) 18
implicitly given by Equation (26), evaluated as
vi = —vo(k—1), v =v,(k) and z = 0:

BN (vo(k — 1)), Ao (volk = 1)),v0(k — 1),v0(k)) = 0

and by continuity of the function &(-), the
Poincaré map ¥ : wv,(k — 1) — v,(k), can be
represented as:

vo(k) = WM (vol(k — 1)), Ao (vo(k — 1)), v0(k — 1))

Introducing #(k) = v, (k) — v4, we get:

o(k) = (28)
T (A (ve(k— 1)), Aa(vo(k = 1)), v,(k = 1)) — vg
If Ai(vo(k — 1)), Aa(vo(k — 1)) satisfy (24) and
(25), we have W( Ay (vo(k—1)), Aa(v,(k=1)), vo(k—
1)) —vq = 0, which when substituted in the above
equation gives

(k) =0 (29)

Hence, dead-beat control is achieved. The follow-
ing theorem summarizes this result.

Theorem 3.1. Let vyq be the desired velocity needed
to reach the desired altitude x 4. Let the control law

be defined by
o= 2D pny it (m0), € D
m
u = ~ (30)
g+ Mbﬂ"v if (z,v),€ Dea

m
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Flg 4. Phase-plane for the dead-beat control. The pa-
rameters for this simulations are: m = 1kg; n = 1;
k = 1000N/m; zq = 0.46m; a = 0.3
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Flg 5. Phase-plane motion with the asymptotic con-
troller. The parameters for this simulations are: m =
lkg; n = 1; k = 1000N/m; z4 = 0.46m; ¢ = 0.4;
a = 0.3

with the contact velocity-dependent constants A\ (v;)
and A2 (vi), being such as the relations (24) and
(25) hold. Then the system solutions are bounded
and the altitude x4 is reached in one cycle, or
equivalently the exit velocity v,(k) — vq4, in one
step of finite duration.

Simulations are shown in Fig (4) starting from
two different initial position : #(0) = 1.03m and

2(0) = 0.11m.

3.2 Asymptotic stabilization

We consider now the problem of asymptotic sta-
bilization of equation (28). The motivation for
this is twofold: first dead-beat control is known
to result in large amplitude control signals, while
asymptotic stabilizers necessitate lower control
amplitudes. Second, the system robustness will be
enhanced.

Assume now that instead of solving for the equa-
tion

BN (vo(k — 1)), Ao (volk = 1)),v0(k — 1),v0(k)) = 0

with v,(k) set to vg, we rather solve for,

Uo(k) = o (vo(k — 1) —va) + va



where |o| < 1, i.e.

B(M (vo(k — 1)), Ao (vo(k = 1)), v0(k — 1),09(k — 1) + vg) = 0

which results in

5(k) = (A (volk — 1)), Az (valk — 1)), vo(k — 1)) = vg
=ik — 1) (31)

since |o| < 1, we have that

lim (k) = 0

k— 00

The following theorem summarizes the result.

Theorem 3.2. Let vy be the desired velocity needed
to reach the desired altitude x4. Consider the
control law 30, with the contact velocity-dependent

constants Ay (v;) and ;\z(vi), defined now such that
the following relationships hold,

d1(M(k—=1),—vo(k—1),0) =z
if —wvolk—1)€[—vq,—00)
ce(k—1) = (32)
(bl (A7'UO(k - 1)70)7
if —wvo(k—1) € (—vg,0)
0= (;SQ(AQ(]C— 1),l’c(k— 1),’Ud) (33)
if we(k—1)€(0,z],
with & being defined as & = ¢1(A, —v4,0). Then

the system solutions are bounded and satisfy:

lim v,(k) = vq
k—o00

Hence, the jump altitude x4 1s reached asymptot-
really with a convergence velocity defined by o.

Remark Boundedness of the solution away from
the Poincare section follows from the fact that
during contact, the system motion is completely
characterized by the relationship # = ®(v;,v).
From the continuity and boundedness of the map
®(-), and the fact that v; is bounded (no energy
is injected during the flight phase), we have that
system solutions cannot escape in finite time. Fi-
nally note that for any bounded v;, Equation (32)
projects the system trajectories to x, from which
the map (33) provides a bounded exit velocity,
while providing bounded (z,v) trajectories. The
above analysis shows that vy is the unique asymp-
totically stable equilibrium point for v, (k).

The phase-plane motion of the simulations are
shown in Fig (5) starting from two different initial
position: 2(0) = 1.03m and z(0) = 0.11m, with
o = 0.4. As mentioned before, the transient
magnitude of the control signal can be reduced,
as shown the Fig (6).

4. CONCLUSIONS

In this paper we have presented a solution for
the problem of characterizing the existence and
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Flg 6. Time-evolution of the control law. Comparison
between the dead-beat and asymptotic strategy.

stabilizing periodic orbits of an actuated 1-DOF
hopping robot moving on a nonlinear compliant
surface. It was shown that stable periodic motions
are possible via the injection of nonlinear damping
through nonlinear stabilizing feedback. This gives
rise to one-step or asymptotic stabilizers.
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