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Abstract Recent research suggests the importance of

controlling rotational dynamics of a humanoid robot in

balance maintenance and gait. In this paper, we present

a novel balance strategy that controls both linear and

angular momentum of the robot. The controller’s ob-

jective is defined in terms of the desired momenta, al-

lowing intuitive control of the balancing behavior of

the robot. By directly determining the ground reaction

force (GRF) and the center of pressure (CoP) at each

support foot to realize the desired momenta, this strat-

egy can deal with non-level and non-stationary grounds,

as well as different frictional properties at each foot-

ground contact. When the robot cannot realize the de-

sired values of linear and angular momenta simultane-

ously, the controller attributes higher priority to lin-

ear momentum at the cost of compromising angular

momentum. This creates a large rotation of the upper

body, reminiscent of the balancing behavior of humans.

We develop a computationally efficient method to opti-

mize GRFs and CoPs at individual foot by sequentially

solving two small-scale constrained linear least-squares

problems. The balance strategy is demonstrated on a

simulated humanoid robot under experiments such as

recovery from unknown external pushes and balancing

on non-level and moving supports.
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1 Introduction

Even after several decades of research balance mainte-

nance has remained one of the most important issues

of humanoid robots. Although the basic dynamics of

balance are currently understood, robust and general

controllers that can deal with discrete and non-level

foot support as well as large, unexpected and unknown

external disturbances such as moving support, slip and

trip have not yet emerged. Especially, in comparison

with the elegance and versatility of human balance,

present-day robots appear quite deficient. In order for

humanoid robots to coexist with humans in the real

world, more advanced balance controllers that can deal

with a broad range of environment conditions and ex-

ternal perturbations need to be developed.

Until recently, most balance control techniques have

attempted to maintain balance by controlling only the

linear motion of a robot. For example, Kagami et al. [15]

and Kudoh et al. [19] proposed methods to change the

input joint angle trajectories to modify the position of

the Center of Pressure (CoP), a point within the robot’s

support area through which the resultant Ground Reac-

tion Force (GRF) acts. When the CoP, computed from

the input joint motion, leaves the support base, indicat-

ing a possible toppling of a foot, the motion is modified

to bring the CoP back inside the support base while the

robot still follows the desired linear motion of the Cen-

ter of Mass (CoM). The rotational motion of the robot

remains more or less ignored in these approaches.

However, rotational dynamics of a robot plays a sig-

nificant role in balance [18]. Experiments on human

balance control also show that humans tightly regulate

angular momentum during gait [34], which suggests the

strong possibility that angular momentum may be im-

portant in humanoid movements.
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In fact, both angular and linear momenta must be

regulated to completely control the CoP. The funda-

mental quantities and the relations between them are

schematically depicted in Fig. 1 and described subse-

quently.
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Fig. 1: The external forces and torques in (a) are solely re-
sponsible for the centroidal momentum rate change in (b).
(c): Linear momentum rate change l̇ has a one-to-one cor-
respondence with the GRF f . (d): The centroidal angular
momentum rate change k̇ is determined by both f and CoP
location p. (e): Conversely, p is determined by both l̇ and k̇.

Fig. 1(a) shows all the external forces that act on

a freely standing humanoid: the GRF f , the Ground

Reaction Moment τn normal to the ground, and the

weight mg of the robot, where m is the total robot

mass and g is the acceleration due to gravity. Accord-

ing to D’Alembert’s principle, the sums of external mo-

ments and external forces, respectively, are equivalent
to the rates of change of angular and linear momenta,

respectively, of the robot. The mathematical expres-

sions for these relationships are given by (1) and (2).

Fig. 1(b) depicts the robot’s rate of change of angular

momentum about the CoM, k̇, and linear momentum,

l̇, respectively.

k̇ = (p− rG)× f + τn (1)

l̇ = mg + f (2)

In the above equations, rG is the CoM location and p

is the CoP location. Together k and l is a 6× 1 vector

called the spatial centroidal momentum h = [kT lT ]T ,

which was studied in [30]. In this paper, we will call

it spatial momentum, or simply the momentum of the

robot. Note that the spatial centroidal momentunm is

computed with respect to a frame which is aligned to

the world frame and located at the overall CoM of the

robot. Also the frame is instantaneously frozen with

respect to the world frame.

Indeed, as noted in [24], the (spatial) momentum

rate change has a one-to-one relationship with the GRF

and CoP. From (2) and as shown in Fig. 1(c), l̇ is com-

pletely determined by f and vice versa. Furthermore,

from (1) and Fig. 1(d), a complete description of k̇

needs both f and p. Conversely, p depends on both

k̇ and l̇, which is shown in Fig. 1(e).1 This last sen-

tence implies that a complete control of p is impossible

without controlling both momenta.

Based on this fundamental relation researchers have

developed balance maintenance methods that controls

both the linear and angular components of the spatial

momentum [1, 16, 24]. We will call balance controllers

of this approach momentum-based balance controllers.

Some momentum-based balance control approaches

define the desired rotational behavior of the controller

in terms of the CoP [1,24] while others use angular mo-

mentum [16]. Although the GRF-CoP combination has

a one-to-one relationship with momentum rate changes,

their significance regarding balance are very different,

and is worth discussing. Whereas the former character-

ize the magnitude, direction and point of application

of the external forces, the latter describes the result-

ing motion of a robot. The unilateral nature of robot-

ground contact and friction limits impose important di-

rect constraints on the range of GRF and CoP. These

influence the achievable range of momentum rate change,

but only indirectly. On the other hand, it is more natu-

ral to describe the aggregate motion of a robot in terms

of momentum.

In this paper we present a new momentum-based

balance controller that uses both the momentum and

the GRF-CoP for their respectively appropriate pur-

poses: We use momentum to define control objectives

as well as to compute joint motions while GRF and CoP

are used as constraints.

In this method, we first specify the desired momen-

tum rate change for balance (Sec. 3.2). However, the de-

sired momentum rate change may not always be phys-

ically realizable due to several constraints on the foot-

ground contact. First, the CoP cannot be outside the

robot’s support base.2 Second, the GRF must be unilat-

eral in nature, and can never attract the robot towards

the ground. Third, the GRF must satisfy the friction

limit of the foot-ground surface, so as not to cause slip.

1 The normal torque τn also affects k̇ in the transverse
plane. Actually f , p, and τn together constitute the 6 vari-
ables that correspond to the 6 variables of the spatial momen-
tum. Usually τn is omitted in the discussion for simplicity
because its magnitude is small.
2 During single support, the support base is identical to

the foot contact area, whereas during double support on level
ground, the support base is equivalent to the convex hull of
the support areas of the two feet.
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Therefore, in the next step we determine the admis-

sible values of GRF and CoP that will create the desired

momentum rate change as close as possible while be-

ing physically realizable. Specifically, in order to make

the controller robustly applicable to non-level and non-

stationary ground, we directly determine admissible foot

GRFs and foot CoPs, without using more conventional

net GRF and net CoP of the robot. Assuming planar

contact between the ground and each foot, the foot

GRF is the ground reaction force acting on an indi-

vidual foot and foot CoP is the location where its line

of action intersects the foot support plane. Using the

values of admissible foot GRF and foot CoP we recalcu-

late momentum rate changes – these are the admissible

momentum rate changes (Sec. 3.4).

In the subsequent step we resolve the joint accelera-

tions given the admissible momentum rate change, de-

sired joint accelerations for the upper body, and desired

motion of the feet. Finally we compute necessary joint

torques to create the joint accelerations and the admis-

sible external forces using inverse dynamics (Sec. 3.5).

Fig. 2 shows the block diagram for the controller.
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Fig. 2: Overview of Momentum-Based Balance Controller. θ̈
u
d

is the desired joint accelerations for the upper body. T d,i
and vd,i are the desired configuration and spatial velocity of
each foot (i = r, l). Subscripts d and a imply “desired” and
“admissible,” respectively.

During double support, the computation of foot GRFs

and foot CoPs from the desired momentum rate change

is an under-determined problem. This allows us to pur-

sue an additional optimality criterion in the solution.

In this paper, we minimize the ankle torques while gen-

erating the desired momentum rate change. Minimizing

ankle torque is important because typically the ankle

torque is more constrained than others in that it should

not cause foot tipping.

Specifically, we show that computing optimal foot

GRFs and foot CoPs that minimizes ankle torques can

be achieved by solving two simple constrained linear

least-squares problems. Our simulation experiments show

that this new optimization method is significantly faster

than the conventional quadratic programming approach

to solve the same problem.

The main unique contributions of this paper can be

listed as follows:

1. Our momentum-based control framework determines

the desired momenta but before attempting to reach

them, it first checks to make sure that the momenta

targets are physically attainable by computing their

admissible values.

2. The optimal foot GRFs and foot CoPs are com-

puted quickly by solving two small-scale linear least-

squares problems.

3. The framework is sufficiently general to support a

momentum-based stepping algorithm, as reported

recently [49].

We will present a number of simulation experiments

including pushing the single or double-supported robot

in various directions, and maintaining balance when

two feet are on separate moving supports with different

inclinations and velocities.

The remainder of this paper is organized as follows.

After discussing related work in Section 2, we detail the

momentum-based balance control framework in Sec-

tion 3. Section 4 reports the simulation experiments.

Section 5 provides the discussion and the future work.

2 Related Work

Starting from the early work of [46], researchers have

developed numerous techniques for biped balance con-

trol using various approaches. Among these are joint

control strategies using ankle or hip [36,40], whole body

control approaches [5, 15, 16, 32, 41, 44], methods that
find optimal control policies [27, 50], and reflex con-

trollers [12]. In this section we focus on the research

relevant to momentum-based balance control.

The importance of angular momentum in humanoid

walking was reported by Sano and Furusho as early as

1990 [36]. However, it was much later before its impor-

tance for balance maintenance of human and humanoid

robots started to be seriously explored [10,16,34]. Sano

and Furusho [36], and Mitobe et al. [26] showed that it

is possible to generate the desired angular momentum

by controlling the ankle torque. Kajita et al. [16] in-

cluded angular momentum criteria into the whole body

control framework for balance maintenance. After ex-

pressing desired linear and angular momenta as linear

functions of the generalized velocities, they determined

the joint velocities that achieved both momenta.

Komura et al. [18] presented a balance controller

that can counteract rotational perturbations using the

Angular Momentum Pendulum Model (AMPM). This

model augments the well known 3D Linear Inverted
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Pendulum Model (LIPM) [17] with the additional ca-

pability of possessing centroidal angular momentum.

Naksuk et al. [29] proposed an iterative method to com-

pute joint trajectories of humanoid robots to satisfy the

desired CoM trajectory and to minimize the centroidal

angular momentum. Other papers that deal with angu-

lar momentum for balance and gait include [3, 20, 38,

45,48].

Abdallah and Goswami [1] defined balance control

objectives in terms of CoM and CoP, and achieved this

goal by controlling the rate of change of linear and an-

gular momenta of a reduced model humanoid robot.

The joint accelerations to generate the target momen-

tum rate change were resolved using the Moore-Penrose

pseudo-inverse.

In an important recent work in the field of animation

Macchietto et al. [24] also defined balance control objec-

tives in terms of CoM and CoP, and computed the de-

sired momentum rate change. They employed the Cen-

troidal Momentum Matrix [30] to compute joint accel-

erations, followed by computing necessary joint torques

using inverse dynamics. We have adopted the same pro-

cess to determine joint accelerations and torques.

Hofmann et al. [11] presented a method that con-

trols CoM by modulating angular momentum under

large external perturbations. It gives higher priority to

controlling linear momentum over angular momentum

to enhance the performance of the balance controller.

We also give higher priority to attaining the desired

linear momentum when both momenta cannot be si-

multaneously satisfied.

Similar to [1,11,16,24], we also control both the lin-

ear and angular components of the spatial momentum
of the robot for balance maintenance.

Our method improves the method in [16] by provid-

ing a step to check for the admissibility of the desired

values of linear and angular momenta. Our work is also

different from [1] and [24] in that we define the balance

control objectives more intuitively in terms of linear

and angular momenta and not in terms of the net CoP.

Furthermore, our method computes contact forces

at each support foot, and therefore can be used both

during double-support and single-support and also on

non-level, discrete, and non-stationary grounds, whereas

[1, 11,24] consider only single-support.

Table 1 illustrates how the existing methods treat

momentum, GRF, and CoP in formulating balance and

gait strategies. Robot gait planning methods using re-

duced models such as [5,17] (Table 1 (a)) compute the

necessary CoM trajectory which ensures balance for a

specified desired CoP trajectory. This is done using re-

duced models such as the LIPM. As can be seen from

Fig. 1(e) CoP depends on both linear and angular mo-

menta rate changes, so CoM cannot be uniquely de-

termined solely from CoP. This was possible in [5, 17]

because the reduced model used in those works approxi-

mated the robot as a point mass, which can only possess

a zero angular momentum.

In the Resolved Momentum Control approach [16],

both desired linear and angular momenta are used to

determine joint motion for posture change (Table 1

(b)). However, the admissibility of the CoP is not con-

sidered so the robot may lose balance if the values of

input desired momenta are high. The methods in Ta-

ble 1 (c) determine the desired angular momentum rate

change given desired CoP and linear momentum rate

change. In our current method (Table 1 (d)), starting

from the desired linear/angular momenta rate changes,

we first determine admissible foot GRFs and CoPs, and

then compute corresponding admissible momenta rate

changes.

Table 1: The diagrams show how each method on balance
control or gait pattern generation treats momenta (k, l), GRF
(f), and CoP (p). A pair of solid lines determines the target
value together. The dotted line shows the determination pro-
cess of linear motion and force. The subscript “d” indicates a
desired input to the controller and superscript “∗” indicates
that the quantity is used to determine control output such as
joint torques.
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Hyon et al. [14] presented a method to resolve foot

GRFs and foot CoPs such that they minimize the sum

of the squared norm of forces at some points on the

boundary of the foot sole while satisfying the desired

net GRF and CoP.

This method can minimize each foot GRF if the

contact points are well distributed over the foot-ground

contact surface. Their passivity-based controller can re-

markably adapt to unknown rough terrain and non-

level ground [13].

In another important work on the control of exter-

nal forces and torques at each individual foot, Fujimoto

et al. [7–9] resolved foot GRFs and torques simultane-

ously using a quadratic programming method. In con-

trast, we resolve foot GRFs and foot CoPs sequentially,

using two least-squares problems, each of which can be

solved very quickly. Another notable difference between

our work and that of [7–9] is that the latter computed
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external forces and torques from desired accelerations of

CoM and trunk orientation whereas we compute them

from desired linear and angular momenta rate changes.

The advantage of computing desired trunk orientation

from external forces and torques is that it can be done

more intuitively than computing desired angular mo-

mentum, the latter having no direct visible reference.

On the other hand, our approach is based on Newton’s

law, i.e., momentum rate change is completely deter-

mined by the external forces and torques. In contrast,

the angular acceleration of the trunk cannot be com-

pletely determined from the external forces and torques

unless the accelerations of other joints are also specified.

If these joint accelerations are not incorporated in the

force/torque computation, the computed values would

be valid only for motions with negligible joint acceler-

ations.

Abe et al. [2] represented foot GRFs and CoPs in

a similar manner to [14]. Sentis et al. [37] developed

a method to precisely control contact CoPs in a more

general setting of multicontact interaction between a

humanoid robot and the environment using a virtual-

linkage model. Park et al. [31] showed that many bal-

ancing problems can be framed as the second-order cone

programming problem.

Unlike the above-mentioned approaches which in-

volve distributing the net GRF and net CoP to the

supporting feet, Sugihara and Nakamura [42, 43] take

a different approach that computes the desired accel-

eration of CoM from the desired foot GRFs and foot

CoPs, and then resolves the joint motion to realize the

desired acceleration of CoM.

This method has the merit of offering an easy ma-

nipulation of contact state between individual foot and

the ground but, as mentioned in [42,43] by the authors

themselves, is not guaranteed to realize the desired foot

CoP and GRF during double support.

3 Momentum-based Balance Control

Framework

This is the main section of the paper which provides

step-by-step details of how the joint torques for the con-

troller are determined.

3.1 Control Framework

We will represent the configuration of a humanoid robot

as Q = (T 0,θ) ∈ SE(3) × Rn, where T 0 = (R0,p0) ∈
SO(3) × R3 denotes the base frame (trunk) configura-

tion, θ ∈ Rn is the vector of joint angles, and n is the to-

tal number of joint DoFs. The subscripts 0 and s denote

the base frame and joints, respectively, with s implying

“shape” associated with the joint angles in geometric

dynamics [4]. The total DoFs of the robot is thus 6+n,

because the floating base has 6 DoFs. The generalized

velocity can be written as q̇ = (v0, θ̇) ∈ R6+n where

v0 = (ω0,υ0) is the spatial velocity of the trunk with

respect to the body frame and expressed as: 3

[ω0]× = RT
0 Ṙ0 (3)

υ0 = RT
0 ṗ0 (4)

Then, assuming stationary ground, the constraint equa-

tions due to ground contacts and the joint space equa-

tions of motion of the robot are as follows:

0 = J(Q)q̇ (5)

τ = H(Q)q̈ +C(Q, q̇)q̇ + τ g(Q)− JTf c (6)

where τ ∈ R6+n denotes the generalized forces, H is

the joint space inertia matrix, Cq̇ includes Coriolis and

centrifugal terms and τ g is the gravity torque. f c is a

vector representing external “constraint” forces from

the ground, determined by foot GRFs and CoPs, and

the Jacobian J ∈ Rc×(6+n) transforms f c to the gen-

eralized forces. The number of constraint equations c

depends on the nature of constraint at the foot-ground

contact. For example, when both the linear and angular

motion of the support foot are constrained due to foot-

ground contact, c = 6 for single support and c = 12 for

double support. In this case, Jq̇ denotes the linear and

angular velocities of the support foot given q̇, and 0 in

(5) denotes zero velocity of the support foot.

Since the robot base is free floating, the first six

elements of τ are zero, i.e., τT = [0T τTs ]. Hence, we can

divide (6) into two parts, one corresponding to the base,

denoted by the subscript 0, and the other, subscripted

with s, for the joints. Then (5) and (6) are rewritten as

follows:

0 = Jq̈ + J̇ q̇ (7)

0 = H0q̈ +C0q̇ + τ g,0 − JT0 f c (8)

τ s = Hsq̈ +Csq̇ + τ g,s − JTs f c (9)

where (7) is the time derivative of (5).

Due to the high DoFs of humanoid robots, balance

controllers usually solve an optimization problem. How-

ever, the computational cost of the optimization in-

creases rapidly as the dimension of the search space

increases. Even the simplest optimization problem such

3 q̇ is a slight abuse of notation because we do not define
nor use a vector q. However, since se(3), the Lie algebra of
SE(3), is isomorphic to R6, we will use a single vector form of
q̇ ∈ R6+n for convenience. [ω0]× represents a skew-symmetric
matrix of a vector ω0.
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as the least-squares problem has order O(n3) time com-

plexity. Therefore, aiming for computational efficiency,

we have adopted a sequential approach; we divide the

balance control problem into three smaller sub-problems,

which can be solved serially. The balance controller de-

termines the control input τ s through the following

steps:

– Step 1: foot GRFs and foot CoPs (hence f c) are

computed from the desired momentum rate change.

– Step 2: joint accelerations q̈ are determined such

that they satisfy both (7) and (8). Actually, as will

be explained in Sec. 3.5, instead of directly using

(8), we use the centroidal momentum equation (32),

which is a slight variation of (8). In general, if the

total number of robot DoFs is greater than or equal

to c+ 6, a solution to q̈ exists.

– Step 3: the required joint torques τ s satisfying (9)

are computed from f c and q̈ using an inverse dy-

namics algorithm.

Note that, by computing f c and q̈ first, we can use

efficient linear-time algorithms for inverse dynamics in

Step 3, without having to compute the joint space

equations of motion (6) which have a quadratic time

complexity.

3.2 Desired Momentum for Balance Control

The overall behavior of the robot against external per-

turbations is determined by the desired momentum rate

change. We employ the following feedback control pol-

icy:

k̇d = Γ 11(kd − k) (10)

l̇d/m = Γ 21(ṙG,d − ṙG) + Γ 22(rG,d − rG) (11)

where k̇d and l̇d are the independently specified de-

sired rates of change of centroidal angular and linear

momenta. In other words k̇d and l̇d are not time deriva-

tives of kd and ld. Additionally, rG,d is the desired CoM

position. Γ ij represents 3×3 diagonal matrix of feed-

back gain parameters. Note that unlike the linear posi-

tion feedback term in (11), we do not have an angular

position feedback in (10). This is because a physically

meaningful angular “position” cannot be defined corre-

sponding to angular momentum [47]. For postural bal-

ance maintenance experiments we set kd and ṙG,d to

zero and rG,d to be above the mid-point of the geomet-

ric centers of the two feet. For other cases, these values

may be determined from the desired motion.

It is to be noted that, despite the various studies on

angular momentum in humanoid motions [1,3,10,11,16,

18,20,24,26,29,34,36,45,48], the issue of how to set the

desired angular momentum for more complex motions

such as locomotion has not been fully explored, and

remains an important future work.

3.3 Prioritization between Linear and Angular

Momenta

Given the desired momentum rate change, we deter-

mine admissible foot GRF and foot CoP such that the

resulting momentum rate change is as close as possi-

ble to the desired value. If the desired GRF and CoP

computed from k̇d and l̇d violate physical constraints

(e.g., GRF being outside friction cone, normal compo-

nent of GRF being negative, or CoP being outside sup-

port base), it is not possible to generate those k̇d and

l̇d. In this case we must strike a compromise and decide

which quantity out of k̇d and l̇d is more important to

preserve.

Fig. 3 illustrates one case where the desired CoP,

pd, computed from the desired momentum rate change

is outside the support base, indicating that it is not ad-

missible. Two different solutions are possible. The first

solution, shown in Fig. 3, left, is to translate the CoP

to the closest point of the support base while keeping

the magnitude and line of action of the desired GRF fd
unchanged. In this case the desired linear momentum

is attained but the desired angular momentum is com-

promised. The behavior emerging from this choice is

characterized by a trunk rotation. This strategy can be

observed in the human when the trunk yields in the di-

rection of the push to maintain balance. Alternatively,

in addition to translating the CoP to the support base,

as before, we can rotate the direction of the GRF, as

shown in Fig. 3, right. In this case the desired angu-

lar momentum is attained while the desired linear mo-

mentum is compromised. With this strategy the robot

must move linearly along the direction of the applied

force due to the residual linear momentum, making it

necessary to step forward to prevent falling.

In this paper, we give higher priority to preserving

linear momentum over angular momentum because it

increases the capability of postural balance without in-

volving a stepping. Ideally, a smart controller should be

able to choose optimal strategies depending on the en-

vironment conditions and the status of the robot. The

approaches that give higher priority to linear momen-

tum and sacrifice angular momentum can also be found

in the literature [11,41] and in our recent work on step-

ping [49].
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dpp

Gr gr

df

f

p

Gr

f

df

dp

Fig. 3: When the desired GRF, fd and the desired CoP, pd
computed from the desired momentum rate change are not
simultaneously admissible, as indicated by pd being outside
the support base, momenta objectives need to be compro-
mised for control law formulation. Two extreme cases are il-
lustrated. Left: linear momentum is respected while angular
momentum is compromised. Right: angular momentum is re-
spected while linear momentum is compromised.

3.4 Admissible Foot GRF, Foot CoP, and Momentum

Rate Change

Given the desired momentum rate change, we deter-

mine admissible foot GRF and CoP such that the re-

sulting momentum rate change is as close as possible to

the desired value. Admissible momentum rate change is

determined by the admissible foot GRF and foot CoP.

3.4.1 Single Support Case

Dealing with single support case is straightforward be-

cause the foot GRF and CoP are uniquely determined

from the desired momentum rate change, from (1) and

(2):

fd = l̇d −mg (12)

pd,X = rG,X −
1

l̇d,Y −mg
(fd,X rG,Y − k̇d,Z) (13)

pd,Z = rG,Z −
1

l̇d,Y −mg
(fd,Z rG,Y + k̇d,X) (14)

where the Y-axis is parallel to the direction of gravity

vector, i.e., g = (0, g, 0).

If fd and pd computed above are valid, then we

directly use these values. Otherwise, as mentioned pre-

viously, we give higher priority to linear momentum. If

fd is outside the friction cone, we project it onto the

friction cone to prevent foot slipping.

3.4.2 Double Support Case

Determining foot GRFs and foot CoPs for double sup-

port is more involved. Let us first rewrite (1) and (2) for

the double support case. Following [36], we will express

the GRF at each foot in terms of the forces and torques

applied to the corresponding ankle (Fig. 4). The benefit

of this representation is that we can explicitly express

the torques applied to the ankles.

k̇ = k̇f + k̇τ (15)

k̇f = (rr − rG)× fr + (rl − rG)× f l (16)

k̇τ = τ r + τ l (17)

l̇ = mg + fr + f l (18)

In (15), we have divided k̇ into two parts, k̇f , due to

the ankle force, and k̇τ , due to ankle torque. This di-

vision enables us to take ankle torques into account in

determining foot GRFs. fr and f l are the GRFs at the

right and left foot, respectively, and rr, rl are the po-

sitions of the body frames of the foot, located at the

respective ankle joints.

Gr

rf

rτ

lf

gm

lrrr

rn,τ rf


lτ

Fig. 4: By expressing GRF applied to each foot with respect
to the local frame of the foot located at the ankle, we can
factor out the moments τ r, τ l applied to the ankle by the
foot GRFs fr and f l. rr and rl are the positions of the
ankles.

The ankle torques τ i, (i = r, l) are expressed in

terms of foot GRF and foot CoP as follows (Fig. 5):

τ i = (Ridi)× f i +Riτn,i , (19)

where Ri is the orientation of the foot, di is the foot

CoP in body frame, and τn,i = (0, 0, τn,i) is the normal

torque in body frame.

Given k̇ and l̇, solving for foot GRFs and foot CoPs

is an underdetermined problem, which lets us prescribe

additional optimality criteria to find a solution. If we

incorporate minimal ankle torques into the optimality

condition, we could express the objective function as

follows:

wl||l̇d − l̇(fr,f l)||2 + wk||k̇d − k̇(fr,f l, τ r, τ l)||2

+wf
(
||fr||2 + ||f l||2

)
+ wτ

(
||τ r||2 + ||τ l||2

)
s.t. f i and τ i are admissible
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}{W

}{R
rf

rp

rd

rr riβ

rn,τ

),,( hdd yx 

),,( hdd yx 

Fig. 5: We represent the foot/ground interaction forces on the
right foot using foot CoP, whose location with respect to the
right foot frame {R} is denoted by dr = (dr,X ,dr,Y ,−h),
ground reaction moment normal to the ground τn,r =
(0, 0, τn,r), and the GRF fr. fr is represented using four basis
vectors βrj (j = 1 . . . 4) that approximate the friction cone of
the ground, i.e., fr =

∑
j βrjρrj , where ρrj (≥ 0) is the mag-

nitude in the direction of βrj . Therefore, the ground pressure
is defined by 7 parameters, (ρr1, . . . , ρr4, dr,X , dr,Y , τn,r). This
representation is compact, having only one more parameter
than the minimum (3 for force and 3 for torque), and con-
straint can be expressed in a very simple form for a rectan-
gular convex hull of the foot sole, i.e., ρj ≥ 0, dj ≤ dj ≤ dj ,

and |τn| < µτfr,N where fr,N is the normal component of fr,
i.e., the Z-coordinate of RTr fr with Rr being the orientation
of the right foot. µτ is a friction coefficient for torque and h is
the height of foot frame from the foot sole. Note that dr and
τn,r are expressed with respect to the body frame {R} while
rr, pr, fr, and βrj are with respect to the world frame.

(20)

where the first two terms aim to achieve the desired

momentum rate change, the third term regularizes foot

GRFs, and the last term tries to minimize ankle torques.

w’s are weighting factors among the different objectives.

Eq. (20) represents a nonlinear problem and it es-
pecially contains nonlinear cross product terms; this

makes it difficult to use in a real-time controller. Addi-

tionally, (due to ??? ) the form of (20) is not quadratic.

?? Comments about convexity? One solution is to con-

vert this general nonlinear optimization problem to eas-

ier ones that can be solved using least-squares or quadratic

programming methods. This can be achieved by ex-

pressing the foot GRF and foot CoP using the forces

at certain specific locations on the boundary of the

foot soles [14,33]. However, this approach increases the

dimension of the search space significantly. For exam-

ple, [33] used 16 variables to model the GRF and CoP

of one foot, which is 10 more than the dimension of the

unknowns.

We develop a different approach. Instead of increas-

ing the search space to make the optimization problem

easier, we approximate (20) with two constrained least-

squares problems, one for determining the foot GRFs,

and the other for determining the foot CoPs. This way

the number of variables is kept small. Additionally, we

attempt to minimize the ankle torques. Minimizing an-

kle torques is meaningful because large ankle torques

can cause foot slipping.

Our approach can be intuitively understood as fol-

lows. In order to minimize the ankle torques (k̇τ → 0),

the foot GRFs fr and f l should create k̇f as close to

the desired angular momentum rate change (k̇f → k̇d)

as possible while satisfying l̇d. If k̇f = k̇d, the ankle

torques can vanish. If k̇f 6= k̇d, we compute the ankle

torques that are necessary to generate the residual an-

gular momentum rate change, k̇d− k̇f . In other words,

by reducing burdens on the ankle torques to create k̇d,

our approach can be understood as solving (20) for the

case in which minimizing ankle torques has higher pri-

ority than regularizing foot GRFs.

Determination of Foot GRFs

In order to compute the foot GRFs, fr and f l, we solve

the optimization problem below:

min||l̇d − l̇(fr,f l)||2 + wk||k̇d − k̇f (fr,f l)||2

+ εf (||fr||2 + ||f l||2) , (21)

where wk and εf (wk � εf > 0) are weighting factors

for angular momentum and the regularization of foot

GRFs, respectively. Note that, if k̇d = k̇f , the ankle

torques τ i become zero. Each foot GRF is modeled us-

ing four basis vectors βij and their magnitudes ρij that

approximate the friction cone (an inverted pyramid in

Fig. 5) on the ground

f i =

4∑
j=1

βijρij := βiρi , (22)

where βi = [βi1 · · · βi4].

Note that rr and rl are determined by the config-

uration of the robot; they are constants when solving

this problem. Therefore k̇f becomes a linear equation

of ρi when we substitute (22) into (16). Rearranging

into a matrix equation, we can turn the optimization

problem (21) into a linear least-squares problem with

non-negativity constraints where the only unknowns are

the ρi:

min ||Φρ− ξ||2 s.t. ρi ≥ 0 , (23)
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where 4

Φ =

 βr βl
wfδr wfδl

εf1

 ∈ R(3+3+8)×(4+4) (24)

ξ =

l̇d −mgwf k̇d
0

 ∈ R(3+3+8)

ρ =
[
ρTr ρ

T
l

]T ∈ R8 (25)

δi = [ri − rG]×βi (26)

Determination of Foot CoPs

In general, the desired angular momentum rate change

cannot be fully generated only by fr and f l, so the

residual, k̇τ,d = k̇d − k̇f , should be generated by the

ankle torques. To this end, we determine the location

of each foot CoP such that they create k̇τ,d while min-

imizing each ankle torque. It is to be noted that, after

having determined f i, (19) can be written as a linear

function of di and τn,i:

τ i = −[f i]×Ridi +Riτn,i , (27)

so that we can express the optimization problem as a

least-squares problem with upper and lower bounds:

min ||Ψη − κ||2 s.t. η ≤ η ≤ η , (28)

where

Ψ =

[
Ψk
εp1

]
∈ R(3+6)×6, κ =

[
κk
εpηd

]
∈ R(3+6) (29)

η = [dr,X dr,Y τn,r dl,X dl,Y τn,l]
T ∈ R6 , (30)

where the elements of the constant matrix Ψk ∈ R3×6

and κk are determined from (27).5

η and η are determined from foot geometry, fric-

tion coefficient, and the normal component of foot GRF

(see Fig. 5). ηd is chosen such that τ i is zero, i.e., the

line of action of f i intersects the ankle. Note that both

the least-squares problems have a small number of vari-

ables, so the optimization can be carried out quickly.

4 The vector δi expresses angular momentum rate change
(16) in terms of ρi as follows:

(rr − rG)× fr = (rr − rG)× (βrρr) = [ri − rG]×βr︸ ︷︷ ︸
δr

ρr := δrρr

5 Specifically, Ψk = [Ψ0
k . . .Ψ

5
k] where

Ψ0
k = −R1

rf
b
r,Z +R2

rf
b
r,Y , Ψ1

k = R0
rf

b
r,Z −R

2
rf

b
r,X , Ψ2

k = R2
r ,

Ψ3
k = −R1

l f
b
l,Z +R2

l f
b
l,Y , Ψ4

k = R0
l f

b
l,Z −R

2
l f

b
l,X , Ψ5

k = R2
l ,

and κk = k̇τ,d+h(R1
rf

b
r,X −R

0
rf

b
r,Y +R1

l f
b
l,X −R

0
l f

b
l,Y ). Rji

is j-th column vector of Ri (i = r, l), fbi = RTi f i, and h is the
height of foot frame from the foot sole.

Admissible Momentum Rate Change

After determining admissible foot GRF and foot CoP,

the admissible momentum rate change ḣa = [k̇
T

a l̇
T

a ]T

is also computed using (1) and (2) for single support,

or (15) and (18) for double support.

3.5 Determination of Joint Accelerations and Torques

After determining the admissible foot GRFs and foot

CoPs, and admissible momentum rate changes, we com-

pute joint accelerations and torques to realize them. In

this step, we adopt a procedure similar to that used

in [24].

First, we resolve the desired joint accelerations q̈

for balance such that they satisfy (7) and a variation of

(8). To explain the latter let us first express the spatial

centroidal momentum h = [kT lT ]T in terms of the

generalized velocities:

h = A(Q)q̇ , (31)

where A ∈ R6×(6+n) is the centroidal momentum ma-

trix [30] that linearly maps the generalized velocities to

the spatial momentum. Differentiating (31), we obtain

ḣ = Aq̈ + Ȧq̇ . (32)

If we replace ḣ with external forces using Newton’s

law (refer to (1) and (2)), then (32) expresses the aggre-

gate motion of the dynamic system due to the external

forces, which is exactly same as what (8) represents.

Note that the joint torques are not included in (8). The

only difference is the reference frame: (32) is expressed

with respect to a frame at the CoM whereas (8) is writ-

ten with respect to the base frame. While either (8) or

(32) can be used, we choose to use (32) because our

balance controller defines its objectives in terms of cen-

troidal momenta.

Specifically, we compute the output accelerations of

the balance controller θ̈ such that they minimize the

following objective function:

wb||ḣa −Aq̈ − Ȧq̇||+ (1− wb)||θ̈
u

d − θ̈
u
||

s.t. Jq̈ + J̇ q̇ = ad and θ̈l ≤ θ̈ ≤ θ̈u ,
(33)

where ḣa is the admissible momentum rate change. The

output acceleration vector which is the solution to (33)

is called the admissible output acceleration and termed

as θ̈a. Note that θ̈a contains all the joint accelerations

except those of the floating joints.

Note that, because there can be infinitely many so-

lutions for θ̈a that create ḣa, we have an additional op-

timality criteria in (33), which is to follow the desired
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joint acceleration of the upper body θ̈
u

d as closely as

possible. One can set θ̈
u

d to specify an upper-body task,

or set θ̈
u

d = 0 to minimize the movement. The param-

eter wb(0 < wb < 1) controls the relative importance

between the balance objective (the first term) and the

prescribed motion objective associated with the kine-

matic task (the second term). It is to be noted that wb
should be close to 1 in order to create admissible mo-

mentum rate, but it cannot be exactly 1 because in this

case (33) becomes indeterminate. ad = [aTd,r a
T
d,l]

T is

the desired accelerations of the right and left feet. Sec-

tion 3.6 details how to determine ad. Equation (33) can

be easily converted to a least-squares problem with lin-

ear equality and bound constraints, and many solvers

(e.g., [23] ) are available for this type of problem.

We set θ̈l and θ̈u, the lower and upper bound of the

joint accelerations, somewhat heuristically such that

the joint limit constraints are satisfied (e.g., θ̈u de-

creases when a joint angle approaches its upper limit).

Finally, we compute the feedforward torque input

τ ff from θ̈a and the admissible external forces by per-

forming inverse dynamics. Since external forces are ex-

plicitly specified for the support feet by (23) and (28)

and joint accelerations are set by (33), we have all

the necessary information for inverse dynamics. Specif-

ically, we use the hybrid system dynamics algorithms

[6], which is useful for performing inverse dynamics for

floating-base mechanisms.

Overall torque input is determined by adding feed-

back terms:

τ s = τ ff + τ fb (34)

τ fb = Γ p(θ
∗ − θ) + Γ d(θ̇

∗
− θ̇) , (35)

where Γ p = diag(γp,i) and Γ d = diag(γd,i) are propor-

tional and derivative gains, respectively. Position and

velocity commands θ∗, θ̇
∗

are determined from the time

integration of θ̈a.

3.6 Desired Motion of the Feet

We set the desired foot accelerations ad such that each

foot has the desired configuration T d ∈ SE(3) and ve-

locity vd ∈ se(3). Specifically, for each foot, we use the

following feedback rule:

ad,i = kp log(T−1
i T d,i) + kd(vd,i − vi) , (36)

for i ∈ {r, l} where kp and kd are proportional and

derivative feedback gains, respectively. The log : SE(3)→
se(3) function computes the twist coordinates corre-

sponding to a transformation matrix [28]. The current

configuration T and velocity v of a foot can be com-

puted from the forward kinematics operation assuming

that the robot can either measure or estimate the joint

angles and velocities as well as the configuration and

velocity of the trunk, e.g., from an accelerometer and a

gyroscope.

3.7 Controller Block Diagram

Fig. 6 shows a detailed block diagram of our balance

controller. Inputs to the controller are the desired con-

figuration and velocity of the feet (T d,vd), CoM posi-

tion and velocity (rG,d, ṙG,d), angular momentum (kd),

and the upper body joint motion (θ̈
u

d). Thus the bal-

ance control framework allows for the incorporation of

specific motions of the head, arm and swing foot to

perform some given tasks.

Using the sensory data of joint angles and trunk

velocity, the kinematics solver computes CoM and its

velocity, angular momentum, and the configuration and

velocity of the feet.

4 Simulation Results

We tested the balance controller by simulating a full-

sized humanoid robot (Fig. 7) using our high fidelity

simulator called Locomote. Locomote is based on the

commercial mobile robot simulation software package

called Webots [25], which,in turn, uses a popular and

free dynamics package called Open Dynamics Engine

(ODE). The total mass of the robot is about 50 kg and

each leg has 6 DoFs. The control command was gener-

ated every 1 msec. In the examples of this paper, we

excluded the robot arms from the balance controller

because arms may have other tasks to carry out simul-

taneously. Also, the arms are relatively light-weight and

do not affect the state of balance all that much.

Admissible foot GRF
(cyan line)

Actual foot GRF
(black line)

CoM

Actual foot CoP

Admissible foot CoP

Fig. 7: The balance controller can deal with different non-
level ground slopes at each foot. The cyan lines show the
admissible GRF and CoP at each support foot determined
by the balance controller, and the black lines show the actual
GRF and CoP measured during the simulation.
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Fig. 6: Controller Block Diagram. Subscripts ‘d’ and ‘a’ refer to desired and admissible values, respectively. Subscript ‘i’ refers
to the left and right foot. Note that the blocks in the shaded area in the middle of the figure applies to double support case.
For single support, the admissible foot GRF, CoP, and momenta rate changes are determined as described in Sec. 3.3.

4.1 Push Recovery on Stationary Support

In the first set of experiments the robot is subjected

to pushes from various directions while it is standing

on a stationary support. The directions, magnitudes,

and the locations of the push are all unknown to the

controller. As shown in Fig. 6, we assume that only the

joint angles, joint velocities, and trunk velocity can be

either measured or calculated using sensor data.

When the push magnitude is small, the desired GRF

and CoP computed from the desired momentum rate

change are both admissible, and thus the robot can

achieve the desired values for both linear and angu-

lar momentum. When the perturbation is larger, the

desired values are different from the admissible values,

and in order to maintain balance without stepping, the

controller tries to preserve the CoM location by modu-

lating angular momentum by rotating the upper body.
The resulting motion of the robot is similar to that of a

human rotating the trunk in the direction of the push

to maintain balance.

The top row of Fig. 8 shows a series of snapshots

illustrating this when the robot is subjected to an ex-

ternal push (120 N, 0.1 sec) applied at the CoM in the

forward direction. Before 0.2 sec and after 0.65 sec in

the test, the admissible foot GRF and foot CoP can

be determined such that they create the desired mo-

mentum rate change, so the admissible momentum rate

change during that time period is nearly identical to its

desired value (Figs. 8 (c, f)). However, from 0.2 to 0.65

sec, the admissible foot CoP (Fig. 8 (g)) is kept on the

front border of the safe region of the support, marked

with dotted line. Our controller gives higher priority to

linear momentum so the admissible linear momentum

rate change is still same as the desired value, while the

angular momentum objective is compromised, as shown

by the difference between the desired and admissible

values of angular momentum rate change in Fig. 8 (f).

Fig. 8 (d) shows foot GRFs in vertical direction. The

right and left foot GRFs have similar values and they

smoothly return to the stable values after perturbation.

Foot GRFs in forward direction have the same pattern

with the linear momentum rate change (Fig. 8 (b)) be-

cause there exist no other external forces in forward

direction.

Fig. 8 (g) shows the measured foot CoP, which is

calculated using the contact force information during

the simulation. Ideally it should be the same as the

admissible foot CoP, but actually they are slightly dif-

ferent because of the inclusion of the prescribed motion

objective in (33) as well as the numerical error of the

simulation. Fig. 8 (h) shows the joint torque at the right

ankle and, naturally, its trajectory has the same pattern

with that of the foot CoP.

Fig. 9 shows the balance control behavior when the

single-supported robot is pushed laterally. In this case

the robot maintains balance by rotating the trunk in the

coronal plane. Although compared to double support,

the range of admissible CoP location is smaller during

single-support, it is possible to create larger angular

momentum through swing leg movement.

The trajectories of CoM, foot CoP, foot GRF, mo-

mentum, and ankle torques of this experiment are shown

in Figs. 9 (a-h). These trajectories exhibit patterns very

similar to the case when the double-support robot is

pushed forward (Fig. 8). A notable difference is that for

lateral push it takes about twice the time to get back to

the desired pose than the forward push, as can be seen

by the trajectory of CoM in Fig. 9 (a) compared with

Fig. 8 (a), because the robot rotates more. The reason

that the single-support robot rotates more in lateral

direction is because the safe region of the foot support

base of our robot model is narrower in lateral direction

than frontal direction, thus the robot needs more angu-

lar momentum in lateral direction to keep the foot CoP
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Fig. 8: Top row: Given a forward push (120 N, 0.1 sec), the balance controller controls both linear and angular momentum,
and generates a motion comparable to human’s balance control behavior. The robot is standing on stationary level platforms.
(a-h): Trajectory of important physical properties of the experiment. Small circles in each figure indicate the start and end of
the push. The dotted line in (g) indicates the front and rear borders of the safe region of the support, which is set to a few
millimeters inside of the edge of the foot base. Left foot CoP is very similar to the right foot CoP.

inside the safe region. The slope in Fig. 9 (d) before the

external perturbation is due to the planned movement

of the robot in vertical direction.

4.2 Postural Balance on Moving Support

The second experiment is balance maintenance on non-

level and non-stationary supports as shown in Fig. 10.

In this case the two feet of the robot are supported on

two surfaces of different inclination angles (+10 degrees

and -10 degrees) and they receive continuous indepen-

dent perturbations. In Fig. 10 (top row), both supports

are moving in synchrony back and forth in a sinusoid

pattern. With the amplitude of 1 m, the robot can en-

dure the frequency up to about 0.12 Hz. The robot

needs to generate fairly large trunk rotation to keep

balance.

In Fig. 10 (bottom row) the two foot supports not

only have different inclination angles (± 10 degrees)

but are translating back and forth with out of phase

velocities: when one support moves forward, the other

moves backward. With a 0.4 m translation amplitude

of the support, the robot can maintain balance up to

about 1 Hz of frequency.

When a foot rests on a moving support, we need to

estimate the motion of the support to set the desired

motion of the foot properly. We use the following rule:

if the measured CoP is inside the safe region of the

support foot, we determine that the foot is not tipping

but stably resting on the moving support. In this case,

we update the desired configuration and velocity of the

support foot to its current configuration and velocity,

i.e., vd = v and T d = T .

The desired horizontal location of CoM is set to the

middle of the geometric centers of the two feet, and the

desired velocity of CoM is set to the mean velocity of

the two feet.

In all the experiments above, the following parame-

ters are used: Γ 11 = diag{5,5,5} in (10), Γ 21 = diag{40,20,40}
and Γ 22 = diag{8,3,8} in (11), wk = 0.1, εf = 0.01 in

(21), and εp = 0.01 in (29).
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Fig. 9: Top row: A leftward push (100 N, 0.1 sec) is applied to the single-supported robot on stationary level support. (a-h):
Trajectory of important physical properties of the experiment. Small circles in each figure indicate the start and end of the
push.

Fig. 10: Top row: The two supports translate forward and backward with the same speed. In order to maintain balance, the
robot rotates its trunk in a periodic manner. The red arrows indicate the direction and magnitude of the linear momentum
of the robot. Bottom row: The robot maintains balance on moving supports. The two foot support surfaces have different
inclination angles and out of phase front-back velocities.

4.3 Computational Costs of Optimization Processes

Our framework includes solving three optimization prob-

lems and each problem can be solved efficiently. We

solve (23) using the Non-Negative Least-Squares algo-

rithm [21]. In our experiment, it takes about 0.009 mil-

lisecond to solve (23) (www.netlib.org/lawson-hanson/all).

Equation (28) can be solved using the Bounded-variable

least squares algorithm [39] (http://lib.stat.cmu.edu/

general/bvls) and the computation time varied from

0.006 to 0.01 millisecond. Altogether, the two optimiza-

tion problems take less than 0.02 millisecond. This is

significantly less than what quadratic programming (QP)

methods would take. In our experiment, Goldfarb-Idnani
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dual QP solver (http://sourceforge.net/projects/quadprog/)

took 0.03 milliseconds to solve the problem, which is

about 50% slower than our sequential method.

Equation (33) takes the longest, naturally because

of the highest dimension of the unknowns, and it took

about 0.11 millisecond with our rather naive implemen-

tation of the least-squares solver. We experimented us-

ing Intel’s 2.66GHz Core2 Quad CPU without utilizing

multi-core functionality.

5 Discussion and Future Work

In this paper, we introduced a novel balance control

method for humanoid robots on non-level, non-continuous,

and non-stationary grounds. By controlling both linear

and angular momenta of the robot, this whole body bal-

ance controller can maintain balance under relatively

large perturbations and often generates human-like bal-

ancing behavior. The controller can deal with different

ground geometry and ground frictions at each foot by

determining the GRF and CoP at each support foot.

For efficient optimization for the foot GRFs and CoPs

during double support, we developed a novel method

to determine the foot GRFs and CoPs sequentially by

solving two small constrained linear least-squares prob-

lems. We showed the performance of the balance con-

troller through a number of simulation experiments.

The characteristic features of the presented con-

troller are as follows:

– Both angular and linear momenta of the robot are

controlled for balance maintenance and the control

policy is defined in terms of the desired momenta.

– One can choose to satisfy linear and angular mo-

menta in different proportions, as the situation de-

mands.

– Desired foot GRF and foot CoP are directly com-

puted from the desired momentum without requir-

ing to compute the net GRF and net CoP, which

makes the framework applicable to non-level ground

at each foot without having to compute rather com-

plex convex hulls made by contact points to check

feasibility of the net CoP.

– For double support, we compute foot GRFs and foot

CoPs that minimize the ankle torques.

Fig. 11 contains two plots showing the performance

limits of the balance controller on stationary floor and

corresponds to a forward push on the robot. The first

plot shows the maximum impulse, which is the product

of the magnitude of an impact force and its duration,

that the balance controller can survive. The second plot

shows the maximum duration for which a given impact

force can be survived.

According to the first plot, the maximum impulse

that the robot can successfully handle drops quite rapidly

and becomes more or less constant for a force larger

than 80 N. The maximum duration of push that the

robot can handle drops even more precipitously as the

force magnitude increases.

The message delivered by the plots is that the bal-

ance control strategy is somewhat weak against a long

duration push. A major reason for this is in general, a

humanoid robot can generate angular momentum for

only a short time: the trunk and the legs, which are

the most effective body parts in creating large angu-

lar momentum, cannot rotate indefinitely due to the

joint limits and self-collision possibility. Therefore, the

strategy of modulating angular momentum for balance

maintenance has limitations against a continuous push.
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Fig. 11: Maximum impulse (left) and duration (right) of for-
ward push (Fig. 8, top row) that the balance controller can
handle for given magnitude of force.

A possible remedy for surviving a long-duration push

would be to take a different strategy rather than mod-

ulating angular momentum. For example, in the situa-

tion of Fig. 10 (top row), if the robot could estimate the

inertial force, it could maintain balance by leaning the

body against the accelerating direction of the moving

platforms, instead of rotating its trunk as the current

controller does.

Our algorithm currently does not utilize the force

and torque sensor data when it determines the desired

and admissible GRF and CoP. While this can be re-

garded as a feature of our method for a robot that is

not equipped with force-torque sensors, the difference

between the actual and desired values can become sig-

nificant as the errors in physical parameter of the dy-

namics model increase. As many of today’s humanoid

robots are equipped with force-torque sensors at the

foot, using the sensory information as a feedback data

is available to many humanoid robots and can help re-

duce the difference between the actual and desired GRF

and CoP. Also the sensory data could be further used

for estimating the direction and magnitude of external

perturbations.
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The proposed method takes an inverse dynamics-

based approach, which depends on an accurate knowl-

edge of the physical parameters of the robot. Since a

large modeling error may negatively influence the per-

formance of the controller, it is an important future

work to improve the balance controller to be more ro-

bust against modeling errors.

Due to the unilateral nature of the robot-ground

contact, all postural balance controllers have intrinsic

limitations. Therefore, another important venue of fu-

ture work is to develop a different type of balance con-

troller that will deal with the larger external distur-

bance than the postural balance controller can han-

dle. For example, balance maintenance through step-

ping (Fig. 3) can cope with larger perturbations and

will increase the push-robustness of the robot signifi-

cantly [35].
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