
Predicting Falls of a Humanoid Robot through Machine Learning

Shivaram Kalyanakrishnan
Department of Computer Science
The University of Texas at Austin

Austin, TX 78712, USA
shivaram@cs.utexas.edu

Ambarish Goswami
Honda Research Institute

Mountain View, CA 94041, USA
agoswami@honda-ri.com

Abstract

Although falls are undesirable in humanoid robots, they are
also inevitable, especially as robots get deployed in physi-
cally interactive human environments. We consider the prob-
lem of fall prediction, i.e., to predict if a robot’s balance con-
troller can prevent a fall from the current state. A trigger
from the fall predictor is used to switch the robot from a bal-
ance maintenance mode to a fall control mode. Hence, it is
desirable for the fall predictor to signal imminent falls with
sufficient lead time before the actual fall, while minimizing
false alarms. Analytical techniques and intuitive rules fail to
satisfy these competing objectives on a large robot that is sub-
jected to strong disturbances and exhibits complex dynamics.
Today effective supervised learning tools are available for
finding patterns in high-dimensional data. Our paper con-
tributes a novel approach to engineer fall data such that a
supervised learning method can be exploited to achieve reli-
able prediction. Specifically, we introduce parameters to con-
trol the tradeoff between the false positive rate and lead time.
Several parameter combinations yield solutions that improve
both the false positive rate and the lead time of hand-coded
solutions. Learned predictors are decision lists with typical
depths of 5-10, in a 16-dimensional feature space. Experi-
ments are carried out in simulation on an Asimo-like robot.

1. Introduction
As with their human counterparts, a majority of the activi-
ties undertaken by humanoid robots are performed from an
upright posture. However, whereas maintaining such a pos-
ture is like a second nature to humans, the case with hu-
manoid robots is opposite. Lacking the capability of balanc-
ing themselves in a robust manner, today’s robots have to be
shielded from falls through external support or monitored in
controlled environments that involve little physical contact.

Several factors – unexpected external forces; power,
component or communication failure; foot slippage – can
threaten the balance of humanoid robots, especially as
robots gain autonomy in realistic, possibly unforeseen en-
vironments. Falls are undesirable because they can cause
catastrophic physical damage to the robot and its surround-
ings, which may also include people. Thus, fall is a severe
failure mode that can be triggered in multiple ways. Coping

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

with fall demands an integrated strategy that includes fall
avoidance, prediction, and control.

Fall avoidance schemes attempt to reduce the incidence
of fall. When fall does occur, methods tocontrol the fall can
potentially minimize damage to the robot or its surround-
ings. For instance, Fujiwara et al. (2007) consider optimiz-
ing the falling motion to minimize the impact force when the
robot hits the ground. Yun et al. (2009) consider the prob-
lem of altering the direction of the fall to escape a possible
collision with some object on the ground.

The focus of this paper is fallprediction, which is the
critical component of the fall management strategy that de-
cides when to switch from fall avoidance (or balance main-
tenance) to fall control. Specifically, our objective is to de-
velop a fall predictor that continuously monitors the robot’s
state, and raises a flag as soon as it predicts animminent
fall (Figure 1). A trigger from the fall predictor prompts the
robot to abandon the balance maintenance mode, which was
just predicted to fail, and to execute a fall control mode.

While it is essential to predict fall early and maximize re-
action time (the “lead time” to fall), it is also necessary to
avoid false predictions of fall, which waste time by replac-
ing the balance controller with a fall controller, sometimes
thereby precipitating a fall. In other words, the fall predictor
needs to minimize false positives. A key observation from
our experiments is that in practice, trying to predict fall early
typically leads to a high false positive rate, mainly because
the system dynamics are quite complex. Thus, a good fall
predictor must satisfactorily balance the conflicting objec-
tives of high lead time and low false positive rate.

I am balanced. I am falling !

Figure 1: A fall predictor classifies the robot’s current state
asbalanced or falling. This decision determines whether
the robot should deploy balance control or fall control.



1.1 Why Machine Learning?

One may attempt to predict fall through intuitive rules such
as thresholding relevant quantities (e.g. linear and angu-
lar momenta) or by tracking the robot’s center of pressure
(CoP), through which the resultant contact force between the
robot and the ground acts. Alternatively, careful analytical
modeling of a robot’s dynamics could be used to predict if
the robot’s current trajectory will lead to a fall. For example,
Renner and Behnke (2006) employ a model-based scheme
for detecting fall on a kid-size humanoid robot (in simula-
tion), in which deviation from the model’s prediction is used
to gauge whether the robot is falling. While they apply im-
pulses of 0.15Ns to a robot weighing 2.3kg, we apply much
larger impulses of up to 50Ns to a robot weighing 42.1kg.

Unfortunately, analytical methods do not scale well to
large robots with complex geometries that are subjected to
strong disturbances: the resulting dynamics is characterized
by several degrees of freedom, variable friction, different
contact configurations with one or both feet, and underactua-
tion. Indeed Wieber (2008) concludes that while a “viability
kernel” (the set of robot states from which the robot can es-
cape fall by applying balance control) can be analytically de-
rived for very simple control systems, for complex systems
such as humanoid robots the computation is numerically in-
tractable and often impossible. For illustration, consider the
scenario depicted in Figure 2: starting from the same state,
our robot is repeatedly subjected to external forces with dif-
ferent magnitudes. The force application point and direction
are kept fixed. The figure shows the time taken for the robot
to fall (if at all) for different magnitudes of applied force.

For force magnitudes less than52N , the balance con-
troller is successful in preventing a fall. A magnitude of
54N causes the robot to fall after3.2s. As the force mag-
nitude is increased, the corresponding time interval to fall
is between1.25s and2.25s. However, this trend does not
continue: force magnitudes from74N through82N do not
cause a fall! As the figure shows, there are multiple pock-
ets of “fall” and “no fall” along the dimension of increasing
force magnitude: there is no threshold below which fall is al-
ways avoided and above which fall always occurs. Interest-
ingly some falls involve falling forwards, some backwards,
and some sideways. Such non-monotonic patterns are also
prevalent across state variables corresponding to center of

0 50 100 150 200 250 300

0

0.5

1

1.5

2

2.5

3

Applied Force Magnitude / N

T
im

e 
A

fte
r 

F
or

ce
 A

pp
lic

at
io

n 
/ s

 

 

Time to reach Fallen

Figure 2: In this simulation experiment horizontal pushes of
increasing magnitude are applied to an upright robot. The
bars show the time taken for the robot to fall (as defined in
Section 2.2). Gaps in the plot imply no fall.

mass (CoM) displacement, linear and angular momenta. Al-
though the irregular nature of fall eludes precise analytical
modeling, we hypothesize that a machine learning solution
– driven by data – could cope better with the challenge.

1.2 Scope of Contribution
Supervised learning is today a mature discipline with the
tools to reliably infer patterns among seemingly irregular
data; in this paper we present a method for leveraging its
strength to achieve effective fall prediction on large, high-
DoF (degree of freedom) robots subjected to strong distur-
bances. If a robot’s hardware undergoes wear and tear, or its
controller changes, a learning algorithm can be re-run with
little change on data gathered from the updated configura-
tion of the robot. The manual effort required in so doing
would be significantly less than that of a model-based so-
lution, which would demand fresh calibration and revised
modeling. Further, a machine learning-based solution pro-
vides areactive strategy, under which predictions can be
made almost instantaneously when deployed on a robot.

Ultimately fall is a problem faced by real robots. While
we do not expect a fall predictor learned in simulation to reg-
ister identical performance when deployed on a real robot,
our results establish machine learning as a promising strat-
egy that can be applied to data collected from a real robot.
Indeed a solution learned off-line in simulation could initial-
ize on-line learning on a real robot. We describe our learn-
ing process in Section 2. Results are presented in Section 3,
which is followed by a discussion in Section 4.

2. Learning Process
The essential “learning” step in our solution is routine su-
pervised learning. However, in order to successfully meet
the specific demands of fall prediction, careful engineering
is necessary in the preparation of the training data and the
subsequent use of the learned classifier. In this section we
enumerate the various stages in our learning process.

2.1 Generating Trajectories
We use the commercial robotics simulation software,
WebotsTM (Michel 2004), to simulate an Asimo-like robot
with 26 degrees of freedom. The robot has a mass of42.1kg,
with its CoM at a height of0.59m above the ground. Each
foot is 0.225m long and0.157m wide. The robot’s balance
controllerCbal implements the following strategy: if the lin-
ear momentum of the robot along either its frontal or its
sagittal planes exceeds a fixed threshold, the robot widens
its stance, thereby enlarging its support base and lowering
its CoM. This strategy effectively thwarts falls, sometimes
even when impulses of up to40Ns are applied.

We obtain data for training the fall predictor by apply-
ing varying impulses to the robot at random instants of time
in its walk cycle and recording the resulting trajectories.
Each “push” comprises a constant force application for0.1s;
the force magnitude is drawn uniformly randomly from the
range[0, 500N ]. The force is applied horizontally to the
torso of the robot, at an angle with its sagittal plane drawn
uniformly randomly from[−180◦, 180◦], at a height above



its CoM drawn uniformly randomly from[−0.05m, 0.25m].
These ranges are chosen such that roughly half the trajecto-
ries (out of a total of 1000) result in fall. We hypothesize
that the resulting states will be similar to the states arising
when the robot is subjected to more realistic disturbances.

2.2 Labels

We partition the state space of the robot into three classes:
balanced, falling and fallen. Any state reached by the
robot along its trajectories belongs to one of these classes,
which are depicted schematically in Figure 3. Thefallen
class (most peripheral) comprises states which satisfy some
rule to identify a fallen robot, such as whether parts of
the robot’s body other than its feet are in contact with the
ground, or its CoM falls below some threshold height (set
to 0.33m in our experiments to determinefallen). The
balanced class (most interior) comprises states from which
applying a balance controllerCbal will not lead to afallen
configuration when the only forces acting on the robot are
its weight W , the resultant ground reaction forceR, and
friction Ffr. For a given robot the shape and size of the
balanced class is specific to a balance controller: likely, a
“better” Cbal will enjoy a largerbalanced class. Interme-
diate states that are neitherbalanced nor fallen are desig-
nated asfalling: trajectories passing throughfalling nec-
essarily terminate infallen underCbal.

In realistic settings the robot will come under the influ-
ence of external forcesFext, which we designate to be forces
other thanW , R, andFfr. Likely sources of external forces
are contact forces between the robot and obstacles, slippage
and drag. As shown in Figure 3 external forces arenecessary
for reaching afalling state starting from abalanced state,
althoughCbal may succeed in retaining the robot within
balanced in some cases even withFext acting. In the tra-
jectories we have generated, we have the benefit of hind-
sight, once a trajectory has enteredfallen, to label states
leading up to it (but after our push – an external force – ter-
minated)falling. Trajectoriesnot ending in afallen state
have all their states labeledbalanced.

Cbal

Cfall

extF

fall predictor output: fallingfall predictor output: balanced

x1

x2
falling

balanced

fallen

fallent predictt

3u

u1
u5

u4

u2

Figure 3: The robot’s feature space is partitioned into
balanced, falling and fallen classes. In general the
classes might not occupy contiguous regions of the feature
space. Trajectoriesu1 - u5 are described in Section 2.3.

2.3 Objectives of Fall Prediction

Indeed our purpose is to generalize based on the training
data to construct a fall predictor that maps every robot state
(represented as a vector of features, described in Section 2.5)
into balanced or falling. Armed with such a predictor,
the robot’s policy is to applyCbal as long asbalanced is
predicted, and to switch to a fall controllerCfall if falling
is predicted. A learned fall predictor is bound to be impre-
cise. While no mispredictions occur along trajectoryu1 in
Figure 3, along both trajectoriesu2 andu3, balanced is in-
correctly predicted even afterfalling is reached. Trajectory
u4 corresponds to a false positive andu5 to a false negative.

False negatives can be avoided easily by adding a rule to
predictfalling if the CoM drops below some vertical height
threshold (0.48m for our robot). In contrast, false positives
are difficult to avoid, especially if the fall predictor has to
make early predictions offalling. We define theFalse Pos-
itive Rate (FPR) of a fall predictor to be the fraction of tra-
jectories in whichfalling is predicted for abalanced state.
Since each such incorrect prediction prompts an unnecessary
invocation ofCfall, FPR needs to be minimized.

Trajectoryu3 in Figure 3 is annotated with the instants of
time at whichfalling is predicted (tpredict) and fallen is
reached (tfallen). The interval between these instants is the
time duration for whichCfall acts to minimize the damage
due to the fall. We define theLead Time (τ lead) of a fall
predictor to be the average value oftufallen − tupredict over
trajectories that terminate infallen, assumingCfall is de-
ployed fromtupredict onwards. Larger values ofτlead imply
that Cfall gets more time on average to respond to a fall;
thusτlead is a quantity to be maximized.

We see that the fall predictor with the lowest FPR (zero)
is one that predictsbalanced for every input state; unfor-
tunately, such a predictor also has the lowest value ofτlead

(zero). At the opposite extreme, a predictor that always pre-
dicts falling has maximalτlead, but correspondingly, an
FPR of100%. Neither extreme is practical; we desire a fall
predictor that enjoys a low FPR and a high value ofτlead.

2.4 Parameters to Control FPR and τ lead

The process of preparing training data for the supervised
learning algorithm is a crucial aspect of our solution. Con-
sider a fall predictor that has a prediction accuracy of99%
over allbalanced states. Such a predictor could still suffer
very high FPR if its few incorrect predictions – of predicting
falling instead ofbalanced – are distributed over a large
number ofbalanced trajectories, rather than contained to a
few. At the other extreme, a fall predictor that has a low ac-
curacy in identifyingfalling states correctly might still give
rise to a high value ofτlead if its correct predictions occur
early in thefalling trajectories, since oncefalling is pre-
dicted along a trajectory, subsequent predictions are imma-
terial. In short, a predictor with a higher prediction accuracy
over all the recorded states does not necessarily enjoy lower
FPR and higherτlead. We describe two techniques that we
employ to explicitly promote the learning of fall predictors
that minimize FPR and maximizeτlead.



Consider a part of a trajectory that is within thefalling
class. States occurring early in this trajectory are likelyto be
less distinguishable frombalanced states when compared
to states occurring later in the trajectory. Indeed we observe
that if states that occur early along thefalling trajectory are
presented as training data to the learning algorithm, then the
learned fall predictor is likely to incur higher FPR. In con-
trast, since afalling trajectory will end in afallen state,
states close to this extreme can be separated quite easily,
such as by a rule that thresholds the height of the CoM.

Figure 4 schematically depicts for onebalanced and
one falling trajectory the height of the CoM as a func-
tion of the time elapsed after the application of the impulse
(tforce−end). In principle all the states in thefalling tra-
jectory are valid training examples for thefalling class,
just as all the states in thebalanced trajectory are valid
training examples ofbalanced. However, to reduce the
incidence of false positives, wewithhold from the set of
positive (falling) training data states that occur early along
falling trajectories. Only those positive examples that oc-
cur after a “cutoff” time are used for training. Since different
falling trajectories have different time durations, we stan-
dardize this cutoff time by measuring it with respect to the
instanttheight−drop, which is the point of time at which the
height of the CoM above the ground begins to drop mono-
tonically until afallen trajectory is reached.

We define a parameterτ+, such that onlyfalling states
that occur beyond the instanttheight−drop + τ+ and before
tfallen, the time at which the trajectory enters thefallen
class, are used as positive training instances for supervised
learning. We expect that asτ+ is increased, the learned pre-
dictor will have lower FPR, but also a lower value ofτlead.
Decreasingτ+ (note thatτ+ can be negative) will likely
increase bothτlead and FPR. We still use all the available
negative (balanced) examples for training; best results are
achieved by weightingbalanced instances4 times as high
asfalling instances in the training data.

In attempting to identify a working range forτ+ based on
evaluating its relationship with FPR andτlead, we discover
the need to formulate a second parameter,τhis, to also play a
role in determining this relationship. In principle, the robot
could switch fromCbal to Cfall as soon as the predictor
classifies the current state asfalling. However, this would
make the control policy brittle, over-reactive and often in-

+ +τ

− −−
−−− −

−
−

force−endt theight−drop height−dropt

time

fallent

CoM Z +τ +

+
+
+

++

+

+
+

+
−−

−−−
−−

−−− −−
−−−− −− −−−

− − −−− −−

Figure 4: Whilepreparing the training data, trajectories in
the falling class are sampled based on the parameterτ+.
The instanttheight−drop is when the height of the CoM be-
gins to monotonically decrease until reaching thefallen
class (at timetfallen). Points fromfalling (marked “+”)
are sampled in the interval[theight−drop + τ+, tfallen].

correct, with a single false positive causing an unnecessary
deployment ofCfall. Such an event is avoided by main-
taining a finite history of the atomic predictions made by the
learned classifier, and only predictingfalling when the list
has consistently predictedfalling over all states in the his-
tory window. Figure 5 depicts this adaptation, which also
has the effect of decreasing FPR.

The parameterτhis corresponds to the temporal length of
the history window that is maintained. Whereasτ+ is used
in generating the data for training,τhis only comes into play
after the predictor has been learned. A positive quantity,
τhis effectively smooths out predictions, weeding out stray,
short-lived predictions offalling. In so doing, it also has
the effect of delaying correct predictions offalling, thereby
decreasingτlead. Together,τ+ andτhis provide handles to
control the tradeoff between FPR andτlead: they can be pro-
vided by the user as inputs to the learning algorithm.

2.5 Features
Feature engineering can make a significant difference in the
performance of a learning algorithm. It is desirable for the
chosen set of features to be small, to provide all the informa-
tion necessary to classify a state, while at the same time able
to generalize well to nearby states. For our task, we arrive at
a set of 16 features through successive refinement, trial and
error. Of these, 15 are real-valued numbers corresponding
to five physical quantities: CoM displacement, linear mo-
mentum and its time derivative, angular momentum about
the CoM and its time derivative. We find it best to reference
the chosen vectors to a Cartesian coordinate system located
at the robot’s CoP, with thex andy axes along the ground in
the robot’s sagittal and frontal planes respectively, and thez
axis vertical. Note that the CoP predominantly resides at an
edge or vertex of the robot’s support base when a fall occurs.
Correspondingly, an additional discrete feature we consider
is the robot’s “foot contact mode,” which describes the posi-
tion of the CoP relative to the robot’s feet.

Every state of the robot maps to a foot contact mode,
which identifies whether the left and right feet are touching
the ground, and if they are, the position of the CoP within
the support base. We consider three modes when both feet
are touching the ground: LR-INSIDE, LR-FRONT, and LR-
BACK. In LR-INSIDE, the CoP lies inside the support base,
while in LR-FRONT and LR-BACK, it lies at the front or
back edge, respectively. Other modes for single support
(both left and right) are defined similarly, and one mode de-
scribes the case in which neither foot touches the ground. In
total we define 16 foot contact modes; as a result, our feature

−
−−− − − −−−− −− −−−

−

−−
−

−− − −
+

+ + ++++
+

bal bal bal
bal bal

fall
C C C

C C
C

τhis
τhis

τhis

time

Figure 5: Whileusing a fall predictor, a history of the pre-
dictions made in the past duration ofτhis is maintained. At
time t, falling is predicted only ifall individual predictions
made in the interval[t − τhis, t] arefalling.



vector comprises 16 variables: 15 real-valued variables and
one discrete variable that takes 16 values.

Although techniques such as referencing vectors with re-
spect to the CoP result in more discriminative features, we
note that a targeted study involving aspects such as the ge-
ometry, inertial properties, and controllers used by a specific
robot could likely yield more substantial improvements in
fall prediction. For example, Ḧohn and Gerth (2009) find
the foot tilting angle and velocity to be effective featureson
the BARt-UH robot.

2.6 Learned Representation
Having prepared sets of positive (falling) and negative
(balanced) training instances (16-dimensional), we exper-
iment with several supervised learning methods from the
WEKA machine learning library (Hall et al. 2009). We ob-
tain the best results for our task with rule-based systems such
as decision trees and lists, which marginally outperform
regression-based approaches such as neural networks and
radial basis functions. The trends identified in Section 2.4
apply to all these methods; we posit that the slight difference
in their performance is only a consequence of the extent to
which these qualitatively different approaches require tun-
ing. We adopt decision list learning (or “rule learning”) for
our experiments. Rule-based systems find applications in a
variety of applications (Langley and Simon 1995). Like de-
cision trees, decision lists are grown by splitting nodes recur-
sively, guided by a heuristic such as information gain (Hall
et al. 2009). We observe that better predictions are made
when a separate decision list is learned for each foot contact
mode, rather than when a single decision list is learned, in
which foot contact mode is used as a feature to split nodes.
This observation suggests that foot contact modes separate
the robot’s states into homogeneous regions where decision
boundaries are more regular.

3. Results
We run 10-fold cross-validation tests on a set of 1000 trajec-
tories generated as described in Section 2.1. Every com-
bination of τ+ and τhis yields a separate fall predictor,
which registers different values of FPR andτlead. From Fig-
ure 6(a), which is similar to a receiver operating character-
istic (ROC) curve for classification problems, it is clear that
decreasing FPR in a learned predictor comes at the cost of
decreasingτlead. The dependence of FPR andτlead on the
parameters of the learning algorithm,τ+ andτhis, is shown
in Figures 6(b) and 6(c). In keeping with intuition, we find
that lower (higher) values ofτ+ andτhis increase (decrease)
FPR andτlead. Note that if we did not withhold any positive
instances (τ+ ≈ −1.5s) or use a history window (τhis = 0),
FPR would be nearly 100%;τ+ andτhis arenecessary to
deliver the benefits of supervised learning.

Table 1 summarizes performance statistics of three repre-
sentative fall predictors illustrating that FPR andτlead can
be traded off by adjusting training parametersτ+ andτhis.
FPL1 is conservative, with highτlead but high FPR. At the
other extreme,FPL3 has near-zero FPR, but less than half
theτlead value ofFPL1. In between,FPL2 enjoys a rela-
tively low value of FPR, but also a reasonably high value of

Table 1: Comparison of three representative fall predictors.
Fall predictor: FP

L1
FP

L2
FP

L3

τ+ / s -0.3 -0.25 0.3
τhis / s 0.016 0.060 0.044
FPR 0.46 0.06 0.005

τlead / s 0.90 0.76 0.43
Mean Rule Size 61.6 51.4 5.3

τlead. IndeedFPL2 and several other learned predictors im-
prove both the FPR andτlead values of manually designed
solutions for fall prediction. The best tradeoff we could ob-
tain in a handcrafted solution (by thresholding both X and Y
components of the linear momentum) is an FPR of0.11 with
correspondingτlead of 0.60s. While the results in Table 1
are based on training with 900 trajectories (cross-validated),
we find that roughly 250 trajectories suffice for obtaining
FPR< 10% andτlead > 0.70s.

We define the “mean rule size” of a predictor as the av-
erage number of comparison operators in its 16 component
decision lists. From the last row of Table 1, we notice that
with low values of theτ+ input parameter,FPL1 andFPL2

have fairly high mean rule sizes, indicating that finer distinc-
tions are learned as we train on states early alongfalling
trajectories. The “depths” of the learned lists are typically
between 5 and 10. In comparison, we expect typical hand-
coded rules for fall prediction to contain no more than 4-6
comparisons, over depths of 2–3. Visualizing projections of
trajectories on axes corresponding to different features,we
see no clear separation between the classes. Figure 6(d) re-
visits the illustrative example from Figure 2, and affirms the
expected prediction trend amongFPL1, FPL2, andFPL3.

4. Summary and Discussion
A humanoid robot cannot completely avoid falling, and so
it requires a concerted strategy for controlling a fall whenit
occurs. The precursor to fall control is fall prediction, which
is the subject of this paper. In particular we are concerned
with predicting fall when a large robot is subjected to rel-
atively strong disturbances, and the resulting dynamics can
be quite complex. We adopt a machine learning approach
for the purpose. Rather than our choice of supervised learn-
ing method – decision lists – the more general contribution
of our work is a method to control the tradeoff between FPR
andτlead, which are fundamental desiderata to the problem
of fall prediction. By discarding positive training instances
on the basis of the parameterτ+, we commit to reduce the
incidence of false positives, even if it reduces the lead time
to fall. Likewise τhis is used to weed out stray false posi-
tives by averaging over a time window, which again has the
compensatory effect of reducingτlead. An important direc-
tion for future work is to consider learning methods such
as Hidden Markov Models, which are naturally equipped to
make predictions over temporal sequences. Höhn and Gerth
(2009) implement a related approach for fall prediction and
control on a simulated version of a smaller humanoid robot.

Our results demonstrate that a machine learning-based ap-
proach can significantly improve both the FPR andτlead val-
ues of hand-coded solutions for fall prediction. A learning



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

FPR

τ le
ad

 / 
s

FPL1

FPL2

FPL3

(a)

−0.4

−0.2

0

0.2

0.4 0

0.02

0.04

0.06

0

0.2

0.4

0.6

0.8

1

 

FPL3

τ
his

 / s

FPL2FPL1

 

τ
+
 / s

F
P

R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b)

−0.4

−0.2

0

0.2

0.4 0

0.02

0.04

0.06

0.2

0.4

0.6

0.8

1

1.2

 

FPL3

τ
his

 / s

FPL2FPL1

 

τ
+
 / s

τ le
ad

 / 
s

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

(c)

FPL1 FPL2 FPL3

0 50 100 150 200 250 300

0

0.5

1

1.5

2

2.5

3

Applied Force Magnitude / N

T
im

e 
A

fte
r 

F
or

ce
 A

pp
lic

at
io

n 
/ s

 

 

Time to reach Fallen
Time to predict Falling

0 50 100 150 200 250 300

0

0.5

1

1.5

2

2.5

3

Applied Force Magnitude / N

T
im

e 
A

fte
r 

F
or

ce
 A

pp
lic

at
io

n 
/ s

 

 

Time to reach Fallen
Time to predict Falling

0 50 100 150 200 250 300

0

0.5

1

1.5

2

2.5

3

Applied Force Magnitude / N

T
im

e 
A

fte
r 

F
or

ce
 A

pp
lic

at
io

n 
/ s

 

 

Time to reach Fallen
Time to predict Falling

(d)

Figure 6: (a) A range of fall predictors achieving differenttradeoffs between FPR andτlead. (b) FPR and (c)τlead values
shown as a function of theinputs to the learning process:τ+ andτhis. Three representative predictors,FPL1, FPL2 and
FPL3, showcase the conflict between FPR andτlead. (d) The predictors are compared on the example discussed inSection 1
(Figure 2): one set of bars (taller, background) mark the time after force application to reach afallen state (if at all), while
another set of bars (shorter, foreground) show the time elapsed for predictingfalling (if at all). Foreground bars which do not
overlap with background bars represent false positives.

approach indeed appears promising for fall prediction on a
real robot, too. The pushing regimen described in our work
would be tedious if a human agent is involved in the gener-
ation of each trajectory on the robot, but it is conceivable to
design an automated apparatus to push the robot and arrest
its falls. The robot could then generate data autonomously
through a repetitive process. A similar strategy is adopted
by Kohl and Stone (2004) to optimize the forward walking
speed of four-legged Aibo robots.

In this early work in the area of adaptive fall prediction,
we generate and process data as a batch, leveraging the
strength of established supervised learning methods to sur-
mount the highly irregular robot dynamics. For improved
autonomy, it would be necessary for humanoid robots to
learn with less supervision in an on-line, incremental man-
ner as they encounter new situations.

Acknowledgements
Shivaram Kalyanakrishnan was supported by the summer in-
ternship program at the Honda Research Institute, USA. We
thank the anonymous reviewers of the current and earlier
versions of this paper for providing useful comments.

References
Fujiwara, K.; Kajita, S.; Harada, K.; Kaneko, K.; Morisawa, M.;
Kanehiro, F.; Nakaoka, S.; and Hirukawa, H. 2007. An optimal

planning of falling motions of a humanoid robot. InProc. IROS
2007, 456–462. IEEE.

Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.;
and Witten, I. H. 2009. The WEKA data mining software: An
update.SIGKDD Explorations 11(1):10–18.

Höhn, O., and Gerth, W. 2009. Probabilistic balance monitoring
for bipedal robots. International Journal of Robotics Research
28(2):245–256.

Kohl, N., and Stone, P. 2004. Machine learning for fast
quadrupedal locomotion. InProc. AAAI 2004, 611–616. AAAI
Press.

Langley, P., and Simon, H. A. 1995. Applications of ma-
chine learning and rule induction.Communications of the ACM
38(11):54–64.

Michel, O. 2004. WebotsTM : Professional mobile robot simula-
tion. Journal of Advanced Robotics Systems 1(1):39–42.

Renner, R., and Behnke, S. 2006. Instability detection and fall
avoidance for a humanoid using attitude sensors and reflexes. In
Proc. IROS 2006, 2967–2973. IEEE.

Wieber, P.-B. 2008. Viability and predictive control for safe lo-
comotion. InProc. IROS 2008, 1103–1108. IEEE.

Yun, S.-k.; Goswami, A.; and Sakagami, Y. 2009. Safe fall:
Humanoid robot fall direction change through intelligent stepping
and inertia shaping. InProc. ICRA 2009, 781–787. IEEE.


