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Abstract

The focus of this paper is the problem of foot rotation in biped robots
during the single-support phase. Foot rotation is an indication of
postural instability, which should be carefully treated in a dynami-
cally stable walk and avoided altogether in a statically stable walk.

We introduce the foot-rotation indicator (FRI) point, which is
a point on the foot/ground-contact surface where the net ground-
reaction force would have to act to keep the foot stationary. To
ensure no foot rotation, the FRI point must remain within the convex
hull of the foot-support area.

In contrast with the ground projection of the center of mass
(GCoM), which is a static criterion, the FRI point incorporates robot
dynamics. As opposed to the center of pressure (CoP)—better known
as the zero-moment point (ZMP) in the robotics literature—which
may not leave the support area, the FRI point may leave the area. In
fact, the position of the FRI point outside the footprint indicates the
direction of the impending rotation and the magnitude of rotational
moment acting on the foot. Owing to these important properties, the
FRI point helps not only to monitor the state of postural stability of
a biped robot during the entire gait cycle, but indicates the severity
of instability of the gait as well. In response to a recent need, the
paper also resolves the misconceptions surrounding the CoP/ZMP
equivalence.

KEY WORDS—biped robot, foot-rotation indicator (FRI)
point, zero-moment point (ZMP), foot rotation, postural sta-
bility, stability margin

1. Motivation

The problem of gait planning for biped robots is fundamen-
tally different from the path planning for traditional fixed-
base manipulator arms, as is succinctly pointed out by Vuko-
bratovic, et al. (1990). A biped robot may be viewed as a
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ballistic mechanism which intermittently interacts with its
environment—the ground—through its feet. The foot/ground
“joint” is unilateral, since attractive forces are not present,
andunderactuated, since control inputs are absent. Formally
speaking, unilaterality and underactuation are the inherent
characteristics of legged locomotion, and at the same time,
are the root causes behind their postural instability and fall.
A loss of postural stability may have potentially serious con-
sequences, and this calls for its thorough analysis to better
predict and eliminate the possibility of fall.

Postural balance and stance-foot equilibrium are pro-
foundly intertwined. A biped-robot gait is said to be statically
stable (Shih 1996) and a human posture is said to be balanced
(Patla, Frank, and Winter 1990) if the gravity line from its
center of mass (or GCoM: Ground projection of the Center
of Mass) falls within the convex hull of the foot-support area
(henceforth called the support polygon). It is worth noting
that a human being can almost always regain the upright pos-
ture as long as the feet are securely posed on the ground. The
exit of the GCoM from the support polygon is equivalent to
the presence of an uncompensated moment on the foot, which
causes it to rotate about a point on the polygon boundary.

Rotational equilibrium of the foot is therefore an important
criterion for the evaluation and control of gait and postural sta-
bility in legged robots. Indeed, foot rotation has been noted to
reflect a loss of balance and an eventual fall in monopods (Lee
and Raibert 1991) and bipeds (Arakawa and Fukuda 1997)—
two classes of legged robots most prone to instabilities. The
exit of the GCoM from the support polygon is considered to
be the determining factor of stability in the study of human
posture as well (Patla, Frank, and Winter 1990). Among the
several ways in which the static equilibrium of the robot foot
may be disturbed, such as pure sliding, pure rotation about
a boundary point, composite sliding and rotation, and even
a complete detachment, this paper addresses the initiation of
pure foot rotation.

Although the position of the GCoM is sufficient to deter-
mine the occurrence of foot rotation in a stationary robot, it is
not so for a robot in motion. Instead, it is the location of the
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foot-rotation indicator(FRI) point, which we introduce in this
paper, that indicates the existence of an unbalanced torque on
the foot. The FRI point is a point on the foot/ground surface,
within or outside the support polygon, where the net ground-
reaction forcewould have to actto keep the foot stationary.
The farther away this point is from the support boundary, the
larger the unbalanced moment, and the greater the instability.
To ensure no foot rotation, the FRI point must remain within
the support polygon, regardless of the GCoM position. The
FRI point is a dynamics-based criterion, and reduces to the
GCoM position for a stationary robot.

We emphasize that the FRI point is distinctly different from
the center of pressure (CoP), better known as the zero-moment
point or ZM in the robotics literature (Arakawa and Fukuda
1997; Hemami and Golliday 1977; Hirai, et al. 1998; Li,
Takanishi, and Kato 1993; Shih 1996; Shih et al. 1990; Takan-
ishi, et al. 1985; Vukobratovic, et al. 1990), and frequently
used in gait planning for biped robots. The CoP is a point on
the foot/ground surface where the net ground-reaction force
actually acts. Regardless of the state of stability of the robot,
the CoP may never leave the support polygon, whereas the
FRI point does so whenever there is an unbalanced torque on
the foot. In fact, the distance of the FRI point from the sup-
port polygon is an indication of the severity of this unbalanced
torque, and may be exploited during the planning stage.

This paper makes two contributions. The main contribu-
tion is the introduction of the FRI point, which may be em-
ployed as a useful tool for gait planning in biped and other
legged robots, as well as for the postural stability assessment
in the human. The second contribution is in response to our
discussions with other researchers regarding the misconcep-
tions surrounding the CoP/ZMP equivalence. We review the
basics of both concepts, and show that they are identical.

1.1. Some Comments

Although our work is inspired by the analogy between the
biped robot gait and human locomotion, we do not explicitly
investigate human locomotion in this paper. The discussion
refers uniquely to robots, with the implicit understanding that
the developed concepts may be extended to the study of human
locomotion.

The FRI-point concept may be applied to other multilegged
robots. We limit ourselves to biped robots, because postural
stability and fall-related issues are especially important to stat-
ically unstable robots. Our main focus is the single-support
stage of the locomotion cycle, during which only one foot,
called the support foot, is in contact with the ground, while
the other leg swings forward. In the typical human gait, the
single-support stage occupies about 80% of the entire gait
cycle (Winter, Ruder, and MacKinnon 1990).

We address the mechanics of foot rotation, and do not con-
cern ourselves with the formulation or implementation of any
control law. However, since the real interest in this area re-

sults from control problems, a brief description of the control
issues is included for completeness (in Section 5). Please note
that whenever the context permits, we loosely use “force” to
mean “force/torque.”

2. FRI Point of a General 3-D Biped Robot

To formally introduce the FRI point, we first treat the entire
biped robot—a generaln-segment extended rigid-body kine-
matic chain (see the sketch in Fig. 1 left)—as a system, and
determine its response to external force/torque. We may em-
ploy Newton’s or d’Alembert’s principle for this purpose. The
external forces acting on the robot are the resultant ground-
reaction force/torques,R andM, acting at the CoP (denoted
by P ; see Fig. 1, right), and gravity. The equation for ro-
tational dynamic equilibrium1 is obtained by noting that the
sum of the external moments on the robot, computed either
at its GCoM or atanystationary reference point, is equal to
the sum of the rates of change of angular momentum of the
individual segments about the same point. Taking moments
at the originO, we have

M + OP × R +
∑

OGi × mig

=
∑

ḢGi +
∑

OGi × miai ,
(1)

wheremi is the mass,Gi is the CoM location,ai is the CoM
linear acceleration, andHGi is the angular momentum about
CoM, of theith segment.

An important aspect of our approach is to treat the stance
foot as the focus of attention of our analysis. Indeed, as the
only robot segment interacting with the ground, the stance
foot is a “special” segment subjected to joint forces, grav-
ity forces, and the ground-reaction forces. Viewing from the
stance foot, the dynamics of the rest of the robot may be com-
pletely represented by the ankle force/torque−R1 and−τ1
(negative signs are for convention). Figure 1 (right) artificially
disconnects the support foot from the shank to clearly show
the forces in action at that joint. The dynamic equilibrium
equation of the foot (segment 1) is

M + OP × R + OG1 × m1g − τ1

− OO1 × R1 = ḢG1 + OG1 × m1a1.
(2)

The equations forstaticequilibrium of the foot are obtained
by setting the dynamic terms (in the right-hand side) in eq. (2)
to zero:

M + OP × R + OG1 × m1g − τ1 − OO1 × R1 = 0. (3)

Recall that to derive eq. (3) we could compute the moments
at any other stationary reference point. Out of these, the CoP

1. We deal with rotational equilibrium only, and do not discuss translational
equilibrium (sliding), assuming that the foot/ground friction is sufficiently
large to prevent it.
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Fig. 1. The sketch of a 3-D extended rigid-body biped robot (left), and a view with its support foot artificially disconnected
from the shank to show the intervening forces (right). The CoP, GCoM, and the FRI point are denoted byP , C, andF ,
respectively.

represents a special point where eq. (3) reduces to a simpler
form,

M + PG1 × m1g − τ1 − PO1 × R1 = 0. (4)

Considering only the tangential (XY ) vector components of
eq. (4), we may write

(
τ1 + PO1 × R1 − PG1 × m1g

)
t

= 0, (5)

where the subscriptt implies the tangential components.
SinceM is tangential to the foot/ground surface, its vector
direction is normal to that surface and does not contribute to
this equation.2

In the presence of an unbalanced torque on the foot, eq.
(5) is not satisfied for any point within the support polygon.
One may, however, still find a pointF outside the support
boundary that satisfies eq. (4); i.e.,

2. We ignore foot rotation about the ground normal, as it does not contribute
to a balance loss.

(
τ1 + FO1 × R1 − FG1 × m1g

)
t

= 0. (6)

The pointF is called the FRI point, and is defined asthe
point on the foot/ground contact surface, within or outside the
convex hull of the foot-support area, at which the resultant
moment of the force/torque impressed on the foot is normal
to the surface. By “impressed force/torque,” we mean the
force and torque at the ankle joint, other external forces, plus
the weight of the foot, and not the ground-reaction forces.
Following the work of Banach (1951), we may identify the
impressed forces as theacting forces, in contrast to the reac-
tion forces from the ground, which are theconstrain forces.
An intuitive understanding of the FRI point is obtained by set-
ting τ1 = 0, m1 = 0 in eq. (6). In this case,F is simply the
point on the ground where the line of action ofR1 penetrates,
as shown in Figure 2. The case of the unactuated ankle joint
was considered by Lee and Raibert (1991) to analyze the hoof
rotation in a monopod.

It is important to note that the location of the ankle joint and
the geometry of the support-polygon boundary are the only
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Fig. 2. Condition for foot rotation whenτ1 = 0. The figure
sketches different lines of action of the forceR1 applied on
the robot foot by the rest of the robot at the ankle jointO1. If
the line of action of a force intersects the ground beyond the
footprint, there is a net moment applied on the foot and the foot
rotates. Otherwise, the ankle joint forces may be supported
by the foot/ground interaction forces, and the foot maintains
static equilibrium in its stationary upright configuration.

Fig. 3. The locations of key points—the ankle-joint loca-
tion (O1) and the support-polygon boundary (A andB)—and
not its overall geometry are relevant for the behavior of the
foot. The three examples of the robot foot shown in the figure
have identical behavior, although their geometries are very
different.

important features of the foot that are relevant in our discus-
sion. The actual physical shape of the foot is not important.
See Figure 3 for a graphical illustration of this fact.

Explicit expressions for the coordinates ofF , OF (OFx,

OFy, OFz = 0), are obtained by computing the dynamics of
the robotminus the footatF ,

τ1 + FO1 × R1 +
n∑

i=2

FGi × mig

=
n∑

i=2

ḢGi +
n∑

i=2

FGi × miai .

(7)

Using eq. (6) and considering only the tangential components,

(
FG1 × m1g +

n∑
i=2

FGi × mi(g − ai )

)
t

=
( n∑

i=2

ḢGi

)
t

.

(8)

Noting FGi = FO + OGi andOF = −FO, eq. (8) may be
rewritten as

( n∑
i=2

OF × mi(ai − g) − OF × m1g

)
t

=
(

− OG1×m1g+
n∑

i=2

ḢGi +
n∑

i=2

OGi × mi(ai − g)

)
t

.

(9)

Carrying out the operation, we may finally obtain

OFx =
m1OG1yg +

n∑
i=2

miOGiy(aiz + g)

m1g +
n∑

i=2

mi(aiz + g)

−

n∑
i=2

miOGizaiy +
n∑

i=2

ḢGix

m1g +
n∑

i=2

mi(aiz + g)

,

(10)

OFy =
m1OG1xg +

n∑
i=2

miOGix(aiz + g)

m1g +
n∑

i=2

mi(aiz + g)

−

n∑
i=2

miOGizaix −
n∑

i=2

ḢGiy

m1g +
n∑

i=2

mi(aiz + g)

.

(11)

2.1. Properties of the FRI Point

Some useful properties of the FRI point which may be ex-
ploited in gait planning include the following:

1. The FRI point indicates theoccurrenceof foot rotation,
as already described.

2. The location of the FRI point indicates themagnitudeof
the unbalanced moment on the foot. The total moment
MI

A due to the impressed forces about a pointA on the
support-polygon boundary (Fig. 1, right) is

MI
A = AF × (m1g − R1), (12)

which is proportional to the distance betweenA and
F . If F is situated inside the support polygon,MI

A is
counteracted by the moment due toR and is precisely
compensated; see Figure 4 (left) for a planar exam-
ple. Otherwise,MI

A is the uncompensated moment that
causes the foot to rotate; see Figure 4 (right).
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3. The FRI point indicates thedirectionof foot rotation.
This we derive from eq. (12), assuming thatm1g − R1
is directed downward.

4. The FRI point indicates thestability marginof the robot.
The stability margin of a robot against foot rotation may
be quantified by the minimum distance of the support-
polygon boundary from the current location of the FRI
point within the footprint. Conversely, when the FRI
point is outside the footprint, this minimum distance is
a measure of instability of the robot. An imminent foot
rotation will be indicated by a motion of the FRI point
toward the support-polygon boundary.

3. The CoP (ZMP), GCoM, and FRI Point
Compared

In this section, we compare and contrast the three quantities:
the CoP, the GCoM, and the FRI point. The CoP and GCoM
are used both in the robotics literature as well as in biomechan-
ics, and are often a source of misconception and confusion.
We will pay particular attention to the concept of the ZMP,
and show that it is identical to the CoP. We show that the FRI
point better reflects postural instability in a dynamic situation
compared with the CoP and the GCoM.

3.1. The CoP Reviewed

Although the concept of “CoP” most likely originated in the
field of fluid mechanics, it is frequently used in the study of
gait and postural balance. The CoP is defined asthe point on
the ground where the resultant of the ground-reaction force
acts.

As shown in Figure 5, two types of interaction forces act
on the foot at the foot/ground interface. They are the normal
forcesf ni , always directed upward (Fig. 5, left) and the fric-
tional tangential forcesf t i (Fig. 5, center). The CoP may
be defined as the pointP where the resultantRn = ∑

f ni

acts. With respect to a coordinate originO, OP =
∑

qifni∑
fni

,

whereq i is the vector to the point of action of forcef i and
fi is the magnitude off i .

The unilaterality of the foot/ground constraint is a key fea-
ture of legged locomotion. This means thatf ni ≥ 0, which
translates to the fact thatP must lie within the support poly-
gon. The resultant of the tangential forces may be represented
atP by a forceRt = ∑

f t i and a momentM = ∑
r i × f t i ,

wherer i is the vector fromP to the point of application of∑
f t i .
The complete picture is shown in Figure 5, right. The

stance foot of the biped robot is subjected to a resultant
ground- reaction forceR = Rn + Rt and a ground-reaction
momentM. An analysis with a continuous distribution of
ground-reaction forces was performed earlier (Coussi and
Bessonet 1995; Espiau 1998). We point out that contrary

to what appeared in Shih’s work (1996),R, and notRn, is
the total ground-reaction force. Please note that the CoP is
identical to what has been termed the “center of the actual
ground-reaction force” (C-ATGRF) in a recent paper (Hirai,
et al. 1998).

3.2. The Zero-Moment Point (ZMP)

The concept of the ZMP which we demonstrate to be iden-
tical to the CoP is known to have originally been introduced
in 1969 (Vukobratovic and Juricic 1969). Since then, it has
been frequently used in biped robot control as a criterion of
postural stability (Arakawa and Fukuda 1997; Hemami and
Golliday 1977; Hirai et al. 1998; Takanishi and Kato 1993;
Shih 1996; Shih et al. 1990; Takanishi, et al. 1985; Vuko-
bratovic et al. 1990). Reference is often made to theZMP
condition(Arakawa and Fukuda 1997), or theZMP stability
criterion (Li, Takanishi, and Kato 1993), which states that
the ZMP of a biped robot must be constrained within the con-
vex hull of the foot-support area to ensure the stability of the
foot/ground contact (Arakawa and Fukuda 1997); the walk
stability without falling down (Arakawa and Fukuda 1997);
the dynamic stability of locomotion (Shih et al. 1990; Shih
1996); and the physical admissibility and realizability of the
gait (Shih 1996). Unfortunately, these terminologies are not
all equivalent, and the physical implications of some of them
are not entirely clear.

A similar problem is encountered with the different defi-
nitions of ZMP, which perhaps due to lack of rigor, are not
always clearly understandable. This has created confusion in
the research community. Discussions with other researchers
have convinced us that in view of the significantly increased
interest in biped-robot research in recent times, it is necessary
to review and clarify the physics behind the concept of ZMP
and remove the existing misconceptions. Instead of attempt-
ing to redefine the ZMP, we reproduce some of the definitions
that are correct (being all equivalent) and easy to understand:

Definiton 1 (Hemami and Golliday 1977) The ZMP is the
point where the vertical reaction force intersects the
ground.

Definition 2 (Takanishi, et al. 1985) The ZMP is the point
on the ground where the total moment generated due to
gravity and inertia equals zero.

Definition 3 (Arakawa and Fukuda 1997) The ZMP is the
point on the floor at which the momentT : (Tx, Ty, Tz)

generated by the reaction force and the reaction torque
satisfiesTx = 0, andTy = 0.

Definition 4 (Hirai, et al. 1998) The point on the ground at
which the moment of the total inertia force (which the
authors previously define as the combination of inertia
force and gravity force) becomes zero is called the ZMP.
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Fig. 4. The magnitude of the moment experienced by a point on the support boundary is linearly proportional to the distance
of this point from the FRI point. The magnitudes of the moments at different points are shown by the length of the arrows.
Clockwise (i.e., negative) moments are shown by upward-pointed arrows, and counterclockwise (i.e., positive) moments are
shown by downward-pointed arrows. In the left image the moments are precisely compensated, whereas in the right image
they are not. The subscriptn denotes the normal component of a force.

Fig. 5. An analysis of the CoP. In the foot/ground interface, we have the normal forces (left) and the frictional tangential forces
(center). The CoP is the point (P ) where the resultantRn of the normal forces acts. At the CoP, the tangential forces may be
represented by a resultant forceRt and a momentM. The ground-reaction force isR = Rn + Rt .
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The termzero-moment point is a misnomer, since in gen-
eral only two of the three moment components are zero
(Coussi and Bessonet 1995). This raises a question about
the necessity of introducing a new name for an already well-
known concept, the CoP.

3.3. CoP = ZMP

Definitions 1 and 3 for the ZMP immediately correspond to
the definition of the CoP as described in Section 3.1. It is
also possible to show that the CoP is the point where the
resultant moment generated by the inertia and gravity forces
is tangential to the surface (Definitions 2 and 4). To prove
this, let us first assume that this latter point, which we callD,
is distinct from the CoP. The dynamic equilibrium equation
computed atD takes the form

M + DP × R +
∑

DGi × mig

=
∑

ḢGi +
∑

DGi × miai ,
(13)

whereas by definition,D satisfies

( ∑
ḢGi +

∑
DGi × mi(ai − g)

)
t

= 0. (14)

Comparing eqs. 13 and 14,(DP × R)t = 0. How-
ever, sinceR 6= 0 andDP ∦ R in general, this is possi-
ble only if DP = 0 or the pointsD andP are coincident.
Other approaches have led to identical conclusions (Coussi
and Bessonet 1995; Espiau 1998).

Rewriting eq. (13) as

(
DP × R

)
t

=
( ∑

ḢGi +
∑

DGi × mi(ai − g)

)
t

(15)

gives us a clearer picture of the equivalence of CoP and ZMP.
Whereas the definition of CoP states that the left-hand side of
the equation is zero, the ZMP is traditionally computed from
the expression that the right-hand side is zero.

Since CoP = ZMP, the ZMP may never leave the support
polygon, contrary to what was incorrectly implied earlier (Li,
Takanishi, and Kato 1993; Shih 1996). Also, the ZMP has
no inherent relationship with a dynamically stable gait as has
been previously stated (Li, Takanishi, and Kato 1993; Shih
et al. 1990).

3.4. The FRI Point and the CoP

To relate the FRI point and the CoP, let us rewrite eq. (2), this
time computing the moments atF :

M + FP × R + FG1 × m1g − τ1

− FO1 × R1 = ḢG1 + FG1 × m1a1.
(16)

By substituting eq. (6) into eq. (16), we obtain

(
FP × R

)
t

=
(

ḢG1 + FG1 × m1a1

)
t

. (17)

The FRI point and the CoP are coincident ifFP = 0;
i.e., if (ḢG1 + FG1 × m1a1)t = 0. This is possible if any
one of the following conditions is satisfied: (1)a1 = 0 and
θ̈1 = 0, i.e., the foot is at rest or has uniform linear and angular
velocities; (2)I1 = 0 andm1 = 0, i.e., the foot has zero mass
and inertia; or (3)FG1 ‖ m1a1 andI1 = 0.

It may be shown that for an idealized rigid foot the CoP is
situated at a boundary point unless the foot is in stable equi-
librium. Since the position of the CoP cannot distinguish be-
tween the marginal state of static equilibrium and a complete
loss of equilibrium of the foot (in both cases it is situated at the
support boundary), its utility in gait planning is limited. The
FRI point, on the other hand, may exit the physical boundary
of the support polygon, and it does so whenever the foot is
subjected to a net rotational moment.

3.5. The CoP and the GCoM

The GCoM, represented byC in Figure 1, satisfies

CG ×
∑

mig = 0, (18)

where G is the center of mass of the entire robot and∑
mi = M is the total robot mass. Noting thatCG

∑
mi =∑

CGimi andCGi = CP +PGi , we can rewrite eq. (18) as

CP ×
∑

mig +
∑

PGi × mig = 0. (19)

Substituting in eq. (1), we get

M − CP ×
∑

mig =
∑

ḢGi +
∑

PGi × miai . (20)

From above, P and C coincide if
( ∑

ḢGi + ∑
PGi × miai

)
t

= 0, which is possible if the robot is sta-
tionary or has uniform linear and angular velocities in all the
joints.

4. Simple Examples

The objective of this section is to elucidate the idea behind
the FRI point by means of four simple examples, depicted
in Figures 6 and 7. The examples are based on an idealized
planar point-mass model of the shank (an inverted pendulum)
connected through an “ankle” joint to a triangular foot.

4.1. Example 1

We consider an unactuated ankle joint,τ1 = 0, θ̇1 6=
0, θ̈1 6= 0, as shown in Figure 6a. From eq. (6), we have
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Fig. 6. Simple planar examples. The ankle joint in Example 1 is unactuated (a). The FRI point is situated on the lineO1G1
(extrapolated) at its penetration point on the ground. In Example 2, the ankle torque is just sufficient to counterbalance the
gravity moment, and the system is stationary (b). In this case, as in all other stationary mechanisms, the FRI point coincides
with the GCoM and the CoP.

(a) (b)

Fig. 7. Two simple examples to compare and contrast the CoP (P ), GCoM (C), and FRI point (F ). At left, the foot is in static
equilibrium sinceF is within the support line (althoughC is outside);P is coincident withF . At right, the foot is starting to
rotate, sinceF is outside the support line (althoughC is inside);P is at the tip about which the foot rotates.
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(
FO1 × R1

)
t

= 0, assuming thatm1 ≈ 0. For a friction-
less ankle joint,R1 is always directed towardO1G2; in other
words, if we simply extend the lineO1G2, the point where it
penetrates the ground is the position of the FRI point. Two ex-
treme shank configurations beyond which foot rotation occurs
are shown asC1 andC2 in the figure.

If we release the shank from a position slightly off from its
vertical configuration, it will fall due to gravity while rotating
aroundO1. If the shank rotates clockwise, the foot will remain
stable until the shank arrives at configurationC2, at which
point the foot starts rotating counterclockwise aboutA. On
the other hand, for counterclockwise rotation of the shank,
the foot starts rotating clockwise aroundB once the shank
crosses the configurationC1. Although the opposite rotations
of the shank and the foot may appear counterintuitive at first,
it is better understood by recalling that the forces acting on
the two segments at the ankle jointO1 are equal and opposite.

4.2. Example 2

Next we consider an actuated system (Fig. 6b) with an ankle
torque that precisely compensates for the gravitational mo-
ment but does not generate any shank motion; i.e.,θ̇1 = 0
andθ̈1 = 0. To determine the position of the FRI point of this
system, we useτ1 = −O1G2 × m2g andR1 = −m2g in
eq. (6). We get

∑
FGi × mig = 0. This means thatF falls

on the CG gravity line of the system. This property is valid
not only for the foot/shank, but for any stationary mechanism
(Shih et al. 1990).

4.3. Example 3

In the next example, shown in Figure 7 (left), the shank config-
uration corresponds to a GCoM positionC outside the support
polygon. The foot is, however, prevented from rotating by the
ankle torque (ml2θ̈−mg cosθ ). This should be taken into con-
sideration while planning the gait initiation of biped robots.
It is noteworthy that to stop the robot from tipping over, some
control laws accelerate the heavy robot body forward (Hirai
et al. 1998). This generates a supplementary backward inertia
force—similar to this example—which shifts the FRI pointF

backward, bringing it within the support polygon. Since the
foot is stationary,F = P .

4.4. Example 4

Finally in Figure 7 (right), the shank is vertically upright with
its GCoM well within the support line. Despite this, the foot
starts to rotate due to the ankle torqueml2θ̈ . The FRI point
F is situated outside the support line at a horizontal distance
OFy = lθ̈

g
(l + h) from O. The CoP is at the extreme frontal

point of the support polygon.

5. Control Issues

Although the focus of this work is the dynamics of biped
robots and the introduction of the FRI point, it is the control
of this point which is of importance to the robotics commu-
nity. The control issues faced are similar to those involving
the control of the CoP (or ZMP), and we briefly describe the
available approaches. Readers interested in the actual imple-
mentation of the control of CoP are directed to various earlier
works (Vukobratovic, Frank, and Juricic 1970; Vukobratovic
1973; Takanishi, et al. 1985; Takanishi, et al. 1990; Li, Takan-
ishi, and Kato 1992, 1993; Vukobratovic and Timcenko 1996;
Shih 1996; Fujimoto and Kawamura 1996; Hirai et al. 1998).

Any control strategy for the FRI point needs to be aware of
two important characteristics of legged robots: underactua-
tion and unilaterality. Additionally, the FRI-point control falls
in the category of redundant control. The ground coordinates
of the FRI point are the only two independent parameters to be
controlled, whereas the control input is higher-dimensional,
and is equal to the number of actuated degrees of freedom of
the robot. One therefore needs to impose extra constraints or
other task criteria for a successful redundancy resolution.

The condition that the FRI point (and the CoP) may not
exit the support polygon during a static walk is not by itself
sufficient for a trajectory-tracking implementation. One of
the fundamental difficulties is our inability to specify a rea-
sonable trackable trajectory. For biped robots with human
dimensions, one approach will be to track the CoP trajectory
measured from human locomotion. The connection between
the desired features of a locomotion and the CoP trajectory
also needs to be established.

Peripherally related to the issue of control is the lack of
an accepted definition of gait stability. Although static stabil-
ity has a precise meaning, dynamic stability of gait seems to
simply imply a lack of static stability and an indefinitely sus-
tained gait. We have discussed elsewhere (Goswami, Thuilot,
and Espiau 1998) the difficulties in appropriately defining the
stability as applied to biped locomotion. One definition of
stability that reflects the repetitive pattern of gait is that of the
orbital stability (Hayashi 1985). Three other definitions of
biped robot stability are discussed by Vukobratovic, Frank,
and Juricic (1970). These are body stability, body-path sta-
bility, and stationary-gait stability. Body stability essentially
implies that the body-attitude angles remain in a bounded re-
gion in the space spanned by the angles, and returns to it
after a perturbation. Body-path stability guarantees that the
biped-robot body returns to its original average velocity af-
ter a perturbation. Finally, the stationary-gait stability im-
plies that the characteristic features of a gait, represented by
a parameter vector, remain within a volume in the parame-
ter space. Whereas these definitions are of obvious practi-
cal value, a mathematically more rigorous definition will be
welcome.
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6. Conclusions and Discussion

We have introduced a new criterion called the FRI point that
indicates the state of postural stability of a biped robot. The
FRI point is a point on the foot/ground surface, within or
outside the support polygon, where the net ground-reaction
force would have to act to keep the foot stationary. When the
entire robot is stationary and stable, the FRI point is situated
within the support polygon, and is coincident with the GCoM
and the CoP. For stationary and unstable configurations, both
the GCoM and the FRI point, which are coincident, are outside
the support polygon. The CoP is at the polygon boundary.

In the presence of dynamics, the GCoM and the FRI point
are noncoincident. When the foot is stable (implying that the
robot possesses postural balance), the FRI point is situated
within the support polygon and is coincident with the CoP.
An exit of the FRI point from the support polygon signals
postural instability. The CoP may never leave the support
polygon. The farther away the FRI point is from the support
boundary, the larger is the unbalanced moment on the foot,
and the greater is the instability. The distance between the
FRI point and the nearest point on the polygon boundary is a
useful indicator of the static stability margin of the foot.

Although postural stability of a biped robot (or a human
being) is closely related to the static stability of its foot, the
relationship between foot stability and natural anthropomor-
phic bipedalism is not at all clear. Even a simple observation
of human locomotion will convince us that a significant part
of the gait cycle involves foot rotation. One of our future
goals is to measure the FRI-point trajectory for natural human
locomotion.

We have investigated the fundamentals of the CoP and the
ZMP in this paper. Since its introduction about 30 years ago,
the ZMP has found frequent mention in the robotics litera-
ture, but unfortunately, confusion about its physical nature
has persisted. Some of this confusion is due to a nonrigorous
choice of terms in the existing definitions. This paper lists
some of the definitions that are clear and consistent. We have
three major comments about this issue. First, we have shown
that the CoP and the ZMP are physically identical. Second, all
three moment components are not necessarily zero at the ZMP.
This raises a question about the appropriateness of its name,
especially in view of the first point. Third, the ZMP (being
identical to the CoP) may never leave the support polygon,
despite several indications to the contrary in the literature.
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