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Abstract Humanoid robots are expected to share human
environments in the future and it is important to ensure the
safety of their operation. A serious threat to safety is the
fall of such robots, which can seriously damage the robot
itself as well as objects in its surrounding. Although fall is a
rare event in the life of a humanoid robot, the robot must be
equipped with a robust fall strategy since the consequences
of fall can be catastrophic. In this paper we present a strategy
to change the default fall direction of a robot, during the fall.
By changing the fall direction the robot may avoid falling
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on a delicate object or on a person. Our approach is based
on the key observation that the toppling motion of a robot
necessarily occurs at an edge of its support area. To modify
the fall direction the robot needs to change the position and
orientation of this edge vis-a-vis the prohibited directions.
We achieve this through intelligent stepping as soon as the
fall is predicted. We compute the optimal stepping location
which results in the safest fall. Additional improvement to the
fall controller is achieved through inertia shaping, which is
a principled approach aimed at manipulating the robot’s cen-
troidal inertia, thereby indirectly controlling its fall direction.
We describe the theory behind this approach and demonstrate
our results through simulation and experiments of the Alde-
baran NAO H25 robot. To our knowledge, this is the first
implementation of a controller that attempts to change the
fall direction of a humanoid robot.

Keywords Humanoid robot fall - Safe fall - Fall prediction -
Direction-changing fall - Inertia shaping

1 Introduction

Safety is a primary concern that must be addressed before
humanoid robots can freely exist in interactive human sur-
rounding. Although the loss of balance and fall are rare in
typical controlled environments, it will be inevitable in phys-
ically interactive environments. Out of a number of possible
situations where safety becomes an issue, one that involves
a fall is particularly worrisome. Fall from an upright posture
can cause damage to the robot itself, to delicate and expensive
objects in the surrounding or can inflict injury to a human
being. Regardless of the substantial progress in humanoid
robot balance control strategies, the possibility of fall remains
real, even unavoidable. Yet, only a few comprehensive studies
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of humanoid fall (encompassing fall avoidance, prediction,
and control) have been undertaken in the literature.

A humanoid fall may be caused due to unexpected or
excessive external forces, unusual or unknown slipperiness,
slope or profile of the ground, causing the robot to slip, trip
or topple. In these cases the disturbances that threaten bal-
ance are larger than what the balance controller can handle.
Fall can also result from actuator, power or communication
failure where the balance controller is partially or fully inca-
pacitated. In this paper we consider only those situations in
which the motor power is retained such that the robot can
execute a prescribed control strategy.

One can ignore the possibility of a fall and wishfully hope
that its effects will not be serious. However, failure stud-
ies, such as in car crash, have taught us against following
this instinct. In fact, planning and simulation of failure situ-
ations can have enormous benefits, including system design
improvements, and support for user safety and confidence.
With this philosophy we closely focus our attention to the
phenomenon of humanoid fall and attempt to develop practi-
cal control strategies to deal with this undesired and traumatic
failure event.

A controller dealing with an accidental fall may have two
primary and distinctly different goals: (a) self-damage min-
imization and (b) minimization of damage to others. When
a fall occurs in an open space, a self-damage minimization
strategy can reduce the harmful effects of the ground impact.
If, however, the falling robot can damage nearby objects or
injure persons, the primary objective would be to prevent this.
The current paper reports a control strategy for changing the
default fall direction of the robot so that it avoids contact
with surrounding objects or people as a means of minimiz-
ing damage to others. Recently, Wilken et al. (2009) have
reported a third possible goal of a fall controller, that of a
deliberate fall of a humanoid soccer goalie. This is the case
of a strategic fall.

Time is at a premium during the occurrence of a fall; a
single rigid body model of a full-sized humanoid indicates
that a fall from the vertical upright stationary configuration
due to a mild push takes about 800-900 ms (Tan et al. 2006).
In many situations the time to fall can be significantly shorter,
and there is no opportunity for elaborate planning or time-
consuming control. Yet, through simulation and experiments
we are able to demonstrate that meaningful modification to
the default fall behavior can be achieved in a very short time
and damage to the environment can be avoided.

Let us clarify that a fall controller is not a balance con-
troller. A fall controller complements, and does not replace,
a balance controller. Further, a fall controller is not a push-
recovery controller. A push-recovery controller is essen-
tially an extended balance controller, which specifically deals
with external disturbances of larger magnitude when the
robot must Take a Step in order to regain balance (Pratt
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et al. 2006; Yin et al. 2007; Stephens 2007). The fall con-
troller is activated only when the default balance controller
or the push recovery controller has failed to stabilize the
robot.

‘We have reported our earlier work on humanoid fall direc-
tion change in Yun et al. (2009), Nagarajan and Goswami
(2010), Kalyanakrishnan and Goswami (2011) and Yun and
Goswami (2012). In the current paper we provide a compre-
hensive account of our work including generalization, exten-
sion and improvements. Also, we present results of hardware
experiments of fall direction change control performed on an
Aldebaran NAO H25 robot.

Examples of our current results are shown in Fig. 1,
in which a “table top” humanoid robot (Aldebaran NAO
H25, Gouaillier et al. 2009) is surrounded by three dolls
occupying three of the four 45° sectors of the semicircular
area in front of the robot. The objective of the fall direction
controller is to make the robot fall inside the empty sector
given the same push by a linear actuator from behind. In dif-
ferent experimental trials, shown in Fig. 1b—e, we rearrange
the dolls in order to change the location of the empty sector.
Using our fall controller, the robot successfully avoids hitting
the dolls by falling into the empty sector.

2 Related work

A number of recent papers reported on the damage mini-
mization and prediction aspects of humanoid fall. In their
exhaustive work, Fujiwara et al. (2004, 2006, 2007, 2004,
2002) proposed martial arts type motion for damage reduc-
tion, computed optimal falling motions using minimum
impact and angular momentum, and fabricated special hard-
ware for fall damage study. Ogata et al. (2008) proposed
two fall prediction methods based on abnormality detection
and predicted Zero Moment Point (ZMP) (Kunihiro et al.
2007). The robot improves fall prediction through experi-
mental learning. Renner and Behnke (2006) use model-based
approach to detect external forces on the robot and Karssen
and Wisse (2009) use principal component analysis to pre-
dict fall. Hobbelen and Wisse (2007) proposed Gait Sensi-
tivity Norm which can be used as a fall detector. Following
human movement based search procedure, Ruiz-del Solar et
al. (2009, 2010) implemented a low damage fall sequence
for soccer robots. In Hohn et al. (2006) and Hohn and Gerth
(2009), fall prediction and control are treated together using
Gaussian mixture models and Hidden Markov model. Ishida
et al. (2004) employed servo loop gain shift to reduce shock
due to fall. Kanoi and Hartland (2010) worked on fall detec-
tion from walk patterns. Fall damage minimization is obvi-
ously of natural interest in human biomechanics (Cordero
2003; Cordero et al. 2003, 2004; Chia et al. 2011).
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Fig. 1 a The Aldebaran NAO robot is pushed from behind by a linear
actuator. Its front semicircle is divided into four equal sectors 45° each.
Three dolls are placed in three arbitrary sectors while the fourth sector
is empty. b—e In four trials, we rearrange the dolls in order to change
the location of the empty sector relative to the robot. Under an identical
push the robot successfully changes the fall direction in real time and
falls into the empty sector to avoid hitting the dolls

2.1 Damage minimizing fall control strategies

Many of the previous works on damage minimizing fall
focuses on implementing heuristics such as lowering the
center of mass (CoM) of a humanoid robot during fall. For
example, Ruiz-del Solar et al. (2010) and Fujiwara et al.
(2002) used strategies taken from Japanese martial arts
according to the direction of fall (forward, backward, sides)
and each strategy is accompanied by a lowering of the CoM.

A few of the works listed below further reduced the dam-
age from fall by designing specific trajectories for the CoM
instead of just lowering it. However, these works were lim-
ited to forward fall only. Fujiwara et al. (2004) added brak-
ing of the landing speed after lowering the CoM so that the
falling robot reduces the impact velocity. The braking was
achieved by stretching the body fast just before the robot hits
the ground. Also, they reduced the feedback gain after brak-
ing in order to make the joints compliant. Researchers also
used straight (Kunihiro et al. 2007) and curvilinear (Ogata et
al. 2008) trajectories of the CoM, and both the trajectories
virtually targeted the same two phases: lowering the CoM and
re-stretching the body to reduce the vertical speed just before
the impact. In hardware experiments, Fujiwara et al. (2007)
used a simplified humanoid robot and used optimization tech-
niques to design the optimal joint trajectories for minimizing
the impact velocity during a forward fall while maintaining
all the constraints. Interestingly, the motions obtained were
similar to the results from the previous works in that they
also included the two similar phases.

Ruiz-del Solar et al. (2009), instead of minimizing the
direct impact velocity, tried to minimize damage to each joint
by reducing the axial force and torque resulting from the
impact. They used motion-capture data to construct the base
fall motions and hand-tuned them joint by joint.

In their study of intentional fall, Wilken et al. (2009)
adopted an inverse approach; instead of minimizing the fall
damage, they first designed the fall motions and then changed
the robot’s structure to reduce the damage. Springs and flexi-
ble rubber struts were added to the most damage-prone loca-
tions of the robot given the deliberate fall motion of a robot
soccer goalie.

2.2 Biomechanical studies of human fall

At present, modeling, analysis and simulation of fall are
active research topics in biomechanics. This research sug-
gest that the body segment movements during a fall are not
random and unpredictable, but involve directed efforts to land
safely (Robinovitch et al. 2000). Fall strategies in humans can
thus inspire biomimetic strategies for a humanoid robot.
Most fall strategies involving humans are meant for injury-
minimization and they have two main objectives: (1) the
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reduction of impact velocity, and (2) the distribution of
impact force to a larger contact area. Because fall strategy is
a time-critical task, its success depends on how early a fall is
predicted and areactive action is initiated. Hence, the reaction
time is an important factor for a fall (Ashton-Miller 2000).

Typical injury-minimization strategies of humans involve:
(1) extending both arms to diffuse full or part of the impact
energy (DeGoede and Ashton-Miller 2003), (2) bending the
elbows to break a fall with reduced impact force (DeGoede
and Ashton-Miller 2003), (3) ground touchdown with the
knee to reduce the downward momentum of fall earlier than
the arms (Tan et al. 2006), (4) lowering of the CoM to
reduce the vertical impact velocity and kinetic energy through
energy absorption in the lower extremity muscles during
descent (Robinovitch et al. 2000, 2004), and (5) curling into
a ball similar to athletes and martial artists.

Although biomechanics results can be very valuable for
our study, we should also be aware of the limits to which
they can be directly applied to humanoid robots. First, the
biologically evolved human fall strategies probably operate
under a learned and assigned value on different parts of the
body with the high-value regions to be protected from an
impact. Typically, the human instinct is to protect their head,
which is considered high value, or the frontal face, perhaps
to reduce the pain associated with a ground impact. This
may not necessarily be applicable for a humanoid robot, for
which it may be more worthwhile to protect an area of crit-
ical control circuitry. Further, due to marked differences in
the material and actuation properties between humanoid and
humans, the magnitude of impact forces for the two cases
will be different.

It is remarkable to note the virtual absence of any literature
on direction-changing fall in the field of biomechanics. This
might be indicative of the fact that these strategies are not
common in nature.

3 Overview of fall control strategy

The essential layout of the decision making process of a
humanoid fall controller can be represented using a flow-
chart as shown in Fig. 2. The robot is assumed to contain a
fall predictor module which is always alert and is continu-
ously evaluating the robot’s state of balance in the form of
a simple question: “Is the robot about to fall?” The robot
is also assumed to have a standard postural balance con-
troller and possibly a step or a reflex controller for handling
stronger disturbances. Most of the time, the fall predictor
responds in the negative and the robot performs its planned
task using the available balance controllers. When the fall
predictor responds in the positive it implies that all strate-
gies to maintain or restore the upright balance of the robot
are guaranteed to fail and that the robot faces an inevitable
fall. This happens when the robot has exited the so called fall
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Fall Management Strategy

Is robot about to fall?
(Fall Predictor)

No / Yes

Use postural balance Switch to fall control
control, step control, or : o - o
reflex control

How is robot falling down? |
(Fall Mode Detector- FMD)

Existence, location, movernent
of surrounding objects, people

Are there objects/people nearby?

Yes No

Direction Changing Fall | Minimum Damage Fall
A. Fall on backpack:

Impact damage minimization by
falling on backpack

A. Intelligent stepping (Section IV A)
B. Inertia Shaping (Whole body and partial)

{Section IV B)
B. Human-like fall

Soft fall, low CoM, and other
biomechanical strategies

Fig. 2 A schematic diagram showing the essential decision making
process of a humanoid fall controller

trigger boundary (FTB), which separates the balanced state
of the robot and the states that lead to a fall (Kalyanakrishnan
and Goswami 2011).

As soon as the robot state breaches the FTB, the robot must
give up trying to restore balance and immediately switch to
a fall controller. However, in order to properly select a fall
controller the robot needs to analyze additional information.
Regardless of the final choice of the fall strategy the robot first
analyzes its state of falling using a module we have named
the fall mode detector (FMD). This module computes and
estimates a number of quantities such as the robot’s state
of ground contact (single support or double support), height
of its CoM from ground and the CoM velocity, lean angle,
direction of fall, the length of time the falling robot takes to
touch the ground, etc (Kalyanakrishnan and Goswami 2011).

Next, the robot determines if there are objects in its imme-
diate surrounding that are likely to come in contact during the
fall. If the surrounding is empty, the robot adopts a minimum
damage fall strategy designed to minimize the mechanical
damage to its own system. If, however, objects or people
are detected in its vicinity, the robot uses the information of
their locations and sizes to formulate a direction-changing
fall control strategy that can avoid contacting these objects
during the fall. This last item is the topic of the current paper.

The direction-changing fall controller uses two basic
strategies to change the default fall direction of a robot, while
the robot is falling down, as described below.

1. Foot placement strategy This strategy attempts to place
the robot feet in an optimal manner in order to change
the geometry of the foot support polygon with respect
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to locations of surrounding objects. An appropriate foot
support polygon can minimize the angular deviation
between the robot’s estimated and desired fall directions.
This technique is described in Sect. 4.1.

2. Inertia shaping strategy Inertia shaping technique recon-
figures the robot’s overall inertia through joint posi-
tion control in order to generate angular momentum that
nudges the robot towards the desired fall direction. This
is described in Sect. 4.2.

Before we can implement the above-mentioned fall strate-
gies, we need to compute and estimate a number of additional
quantities as described below. These are the quantities com-
puted in the FMD module, in addition to sensed information
about robot’s environment.

e Desired fall direction Given the location and size of the
surrounding objects, the robot computes the most favor-
able fall direction by assigning a merit score to each
available direction. Sections 5.3 and 5.4 describe how
this merit score is computed and employed.

e Control duration The robot estimates the length of time
after an inevitable fall is predicted, during which the con-
troller is assumed to remain active. Typically, the control
duration is heuristically set as a fraction of the total esti-
mated time the robot would take to fall to the ground (see
Sect. 5.2.1).

e Reference point The reference point is the location on
the ground towards which the robot is estimated to fall at
the end of the control duration, based on a reduced-order
inverted pendulum model. This estimation makes use of
robot’s configuration and its current CoM velocity. See
Sect. 5.2.2 for details.

The next section provides the details of the direction-
changing fall control strategies.

4 Fall direction change through foot placement and
inertia shaping

Our fall direction change controller uses two basic strategies
which can be employed either independently, sequentially
or simultaneously. The strategies exploit the following two
basic observations: first, regardless of its complex motion,
a falling humanoid topples predominantly about one of the
edges of its support area' . Changing the robot’s support area
geometry can profoundly influence its fall direction. The sup-
port area can be modified through the lifting of a foot or
through a stepping action, and the specific parameters for

! The robot can temporarily topple about a vertex of the foot support
polygon.

these actions are selected using a brute-force search process.
This is called the foot placement strategy. The second obser-
vation is that a change in the robot’s overall inertia can further
affect its fall direction through a redirection of its linear and
angular momenta. We achieve this by using inertia shaping
Lee and Goswami (2009) techniques.

4.1 Support area geometry change through foot placement

Without any fall control, the direction of fall of a humanoid
robot is determined by the location and movement of the cen-
ter of pressure (CoP) relative to the support area boundaries.
The support area can be approximated by a polygonal area
which is the convex hull of all the contact points between
the robot feet and the ground. When the robot starts to top-
ple, its CoP touches an edge of the support area called the
leading edge. Therefore, a change in the physical location
of the leading edge of the support area with respect to the
robot’s CoM exerts influence on the direction of rotation of
the robot, i.e., the direction of fall.

In the schematic diagram of Fig. 3, a humanoid robot is
shown subjected to a forward push as indicated by the red
arrow. If the push is strong enough to topple the robot, the
CoP will approach the front edge (red dotted) of the support
area and the robot will begin to rotate about this leading edge.

The direction and magnitude of the toppling motion is
given by PQ where P is the CoP and Q is what we call
a reference point. The reference point should indicate the
direction of fall. In this paper, we have used the Capture
Point (Pratt et al. 2006) as the reference point?. Although P Q
may not be initially perpendicular to the leading edge of the
support area, it becomes so once the toppling motion sets in.

With a different geometry of the support base as in Fig. 3b,
for the same push, the robot would rotate about a new leading
edge and fall in the new direction P Q. If the robot is to avoid
falling on an object in front of it, we can effect a change in
the fall direction by changing the support base (specifically,
its leading edge) from Fig. 3a to b.

In practice, there are two major challenges in successfully
executing this motion. First, the robot becomes underactuated
as soon as it starts toppling. This creates 1 or 3 uncontrolled
degrees of freedom (DoF) depending on whether the robot
is toppling about an edge or a corner. Therefore, we should
design a controller very carefully to deal with this underac-
tuated phase. Second, the CoP and the reference point con-
tinuously move as the robot moves, which might change the
leading edge during fall.

We can make the robot step at a desired location by con-
trolling its leg joint velocities through inverse kinematics. We
have the following relationships relating the velocities of the
left and right feet and the robot body:

2 More detail about Capture Point is included in Sect. 5.2.2.
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(b)

Fig. 3 A schematic diagram showing the basic idea behind direction-
changing fall control through support base geometry modification. A
forward push on the robot from the back is assumed. P denotes the CoP,
and Q is the reference point (capture point). The dotted lines show the
support base (polygonal convex hull) of the robot

Vi —Vioay =J1 01 (1)
Vg — Vbody =Jr 0R7 (2)

where V1, Vg and Vj,qy are (6x 1) vectors containing linear
and angular velocities of the left and right foot, and of the
body frame, respectively. 0; and g are 6 x 1 joint velocity
vectors of the left and right legs, respectively, and J; and
J r are the leg Jacobian matrices.

Subtracting Eq. 1 from Eq. 2:

Vi-r = [Jr-1][0r. 9L]T (3)

where Vg1 = Vg — Vyand Jr_1 = [Jr, —J ] is the
(6 x 12) matrix called the foot-to-foot Jacobian.

The necessary joint velocities b = [0 r 0 L]T to move
the swing leg to the desired location are given by:

0=J% ,(Vk—Vp) “4)
3 We assume 6-DoF legs.
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where, Jﬁf 1 is the pseudo-inverse (damped least square,
Buss 2004) of Jg_1.

4.1.1 Estimation of the allowable stepping zone

The allowable stepping zone D is the region on the ground
anywhere inside which the robot can plant its foot within the
control duration time AT. As shown in Fig. 4 the allowable
stepping zone is approximated as a rectangular area with
sides 2D, and 2D,,. At each point on this rectangle the robot
foot can rotate through a range of orientation from —Dg to
Dg. The values of Dy, Dy and Dg are computed using the
following equations:

12 12
Dx:ATZ)JR_L(x,i)éiMAX’%yATZ|JR_L(x,i) NG
i=1 i=1
12 . 12
Dy=AT Y | p-r0. 64X |~y AT Y [T g-1.(0. )] (6)

i=1 i=1

12 12
Dp=AT Y |Tr18. DOMAX |~y AT S [Trr(B.1)]. (T)
i=1 i=l1

where 64X is the maximum velocity of the ith leg joint and i
corresponds to one of the 12 joints of the two legs. J r—1 (k, i)
is the numerical value of (k, i) element of Jacobian Jr_;,
which is computed at the time of control trigger. Note that
k € [x, y, B] corresponds to the rows 1, 2, and 6, respectively
of Jgr—r . Finally y is a constant used to approximate éiM AX
which is assumed same for all joints.

To compute the best foot placement location we divide
the allowable stepping zone into a number of small cells.
Each cell corresponds to a foot position given by (x, y) and
contains a range of foot orientation angles given by B. The
dimension of each cell is selected manually through trial and
error. We re-plant the non-support foot according to (x, y, )
of each cell in simulation, and estimate a new reference point
and a new CoP. We repeat this step at each cell to find the
optimal new CoP.

In practice we use only the upper half of the allowable
stepping zone cut by the inclined separatrix line which is per-
pendicular to P Q and goes through the center of the moving
foot, as shown in Fig. 4. This is because when a robot is
falling towards P Q it can hardly place its foot on the other
side of the separatrix. This area, shaded in yellow in Fig. 4,
is divided into cells of foot position (x, y).

The angle of deviation between the desired and the esti-
mated fall direction is computed for each case and the opti-
mal CoP is selected as the one that results in the smallest
deviation. We assume a polygonal foot sole and the support
polygon can be computed with a finite number of points.
The reference point needs to be estimated at the time the
non-support foot touches the ground.
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Fig. 4 The allowable stepping zone is shown by the yellow shaded
area. The left foot is the support foot. P is the CoP when the robot is in
the single support phase and Q is the reference point. 7 represents an
object for the robot to avoid falling on. The allowable stepping zone is
the yellow-shaded upper part of the rectangle (above the inclined blue
separatrix line) with the maximum half-side lengths D, and D,. Dg
denotes the maximum amount of rotation of the swing foot

4.1.2 Step controller for a toppling humanoid

Recall that optimal stepping corresponds to the robot step-
ping on a location on the ground and with a foot orientation
angle that results in the minimum angular deviation between
the estimated and the desired fall direction. Note that this
optimal solution does not imply optimality in a global sense.
Also, the controller does not guarantee the optimal solution,
but rather it tries to achieve the best fall angle given the strate-
gies.

Because the available time is very short, the estimation
is done using inverted pendulum models. Once the optimal
step location is computed, one could hope to simply control
the joint angles through inverse kinematics. However, taking
a successful step to the optimal step location is not trivial
because the standard inverse kinematics solution will not be
sufficient for a toppling robot. There are two reasons for this.
First, the support foot of the toppling robot is not flat with the
ground; therefore, the computation of the position and orien-
tation of the stepping foot based on robot joint angles will be
inaccurate. Moreover, the toppling of the robot foot makes
the robot underactuated because of the passive joint created
at the foot/ground contact. In simple terms, underactuation
makes the robot kinematics influenced by its dynamics in
non-intuitive ways, and a simple position controller is not
likely to succeed in making the robot step as planned.

To deal with this, one solution might be to implement a
controller that directly models and controls the robot’s state
of underactuation (Fantoni and Lozano 2001). However, such
controllers are typically computationally expensive, a luxury
we do not have for the current application. What we currently

(b)

Fig. 5 a Desired future landing posture after the fall control time. T?
and T' 9, are the transformation of the support and the non-support foot
with respect to the global frame. T%, is the desired transformation matrix
from the support foot to the non-support foot to attain the desired landing
posture. b Desired current robot posture to realize the desired landing
posture. For a robot that is toppling, the support foot rotates about the
CoP, P, towards the reference point Q. We model a free joint at P.
Without external forces, the joint angle should increase. The leg joints
are controlled to satisfy 7%, computed in (a)

dois to continuously estimate the rotation angle of the robot’s
stance foot and add appropriate correction in the control of its
stepping foot. Assuming that the robot possesses an IMU in
the trunk, the foot rotation angle can be estimated by noting
the mismatch between the trunk orientation angles as com-
puted by the IMU and by the robot joint angle sensors. With
this information, we implement a leg controller to ensure that
the swing foot is flat as it touches down on the ground.

Since we assume that the CoP does not change during the
fall, the CoP is modeled as a passive rotational joint about
which the support foot rotates, as shown in Fig. 5. The support
footrotation is estimated using the inverted pendulum models
without control. The transformation of the non-support foot
with respect to the global frame T 2 is determined by the
desired stepping location. The transformation of the support
foot T 2 is estimated by simulating the inverted pendulum
model. Therefore, the desired transformation matrix from
the support foot to the non-support foot 7% can be computed
as,

T3 = (1%)~'719. ®)

If the joints are controlled according to T, before the non-
support foot hits the ground as in Fig. 5b, the robot is expected
to step on the desired location by gravity, Fig. 5a. We can
compute joint velocities needed to move the swing leg using
Eq. 4.

Although an appropriate stepping action (including foot
lifting) can exert powerful influence on the future motion of
the falling robot, in some cases it still may not be sufficient to
control the robot to fall in the right direction. In these cases
we employ a approach called inertia shaping, which attempts
to systematically control the robot’s centroidal angular
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momentum through the kinematic control of its overall iner-
tia matrix. We describe inertia shaping in the next section.

4.2 Inertia shaping

The humanoid can attempt to further change the fall direction
after a step is taken. Since a falling robot is normally under-
actuated, direct control of the CoM would not be effective in
general. However, we can indirectly change the fall direction
by generating angular momentum. For this, we have devel-
oped a technique called inertia shaping (Lee and Goswami
2009).

In inertia shaping, we control the centroidal composite
rigid body (CRB) inertia (Walker and Orin 1982) or the
locked-inertia of the robot. Centroidal CRB inertia is the
instantaneous rotational inertia of the robot, referenced at its
CoM, if all its joints are locked. Unlike linear inertia, which
is always constant, the CRB inertia is a function of the robot
configuration and can vary continuously.

Approximating the robot as a reaction mass pendulum,
RMP (Lee and Goswami 2009), or an inverted pendulum with
rigid body inertial mass, and assuming no slip at the ground,
its CoM velocity Vs can be computed as (see Fig. 6):

Ve = wh x PG 9)

where G and a)g are the CoM location and the angular veloc-
ity of the inverted pendulum, respectively. For best results, we

want Vg = —c PT for some scalar ¢. ¢ This can be achieved
by setting the desired angular velocity wy as follows,
wg = —k(ezxpr), (10)

where e, pr is a unit vector along the cross product of z and
PT, and k is the magnitude of angular velocity. The desired
locked inertia is obtained as I; = RIR', where I is the
current locked inertia and R is the rotation matrix obtained
with an exponential map (Murray et al. 1994) from wy:

R = exp(£24), a1

where 24 is the skew-symmetric matrix corresponding to
4.

To implement inertia shaping, we string out the 6 unique
elements of the CRB inertia matrix in the form of a vector:
I3x3) — X’I\(éxl). Next, we obtain the CRB inertia Jaco-
bian J; which maps changes in the robot joint angles into
corresponding changes in 5T, i.e.,

8T = J156. (12)
To attain 14, the desired joint velocities are given by:

0=Jids—1) 13)

4 Extension to a general case with multiple objects such as in Fig 16
is trivial once the desired fall direction is chosen.
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Fig. 6 a To avoid falling on the cylindrical object located at T, the

desired linear velocity of the robot’s CoM, V ¢, should be towards 7' P,
where P is the CoP. b To achieve this the robot should overall rotate
about an axis obtained by the cross product of P7T and the vertical

where J 7 is the pseudo-inverse of J;.

The humanoid can recruit all the joints to attain ;. The
effect of inertia shaping might not always be big enough to
obtain the desired CoM velocity V g, however, even a modest
change is sometimes very useful.

Equation 13 is used for whole body inertia shaping, which
cannot be launched before stepping (foot placement) is com-
pleted, because the two actions may be in conflict. This can
sometimes lead to the the loss of useful time during which the
robot’s upper body does not contribute to attaining a desired
fall direction. To correct this situation, we introduce partial
inertia shaping, which is a procedure to change the CRB
inertia of the robot simultaneously during foot placement,
without using the joints that are involved in the latter.

During partial inertia shaping, we basically recruit only the
upper body joints. The CRB inertia Jacobian J; introduced
above can be re-written as:

Jr=UJpris, Jrprl (14)

where, J pys is the CRB inertia Jacobian corresponding to the
joints that are free from foot placement strategy execution,
whereas J pp is the CRB inertia Jacobian corresponding to
the joints involved in the foot placement strategy execution.
The desired angular velocities 0 p;s to attain I by partial
inertia shaping are given by:

Op1s=J% g Uy —1—Jrp Orp) (15)

where J’; 15 18 the pseudo-inverse of J pyg and 0 Fp is given
by the controller for the optimal foot placement strategy.
Just as the CRB inertia matrix can be defined with respect
to any appropriate point such as the CoM or the CoP, the
inertia shaping can be performed interchangeably about these
respective points. We have earlier performed inertia shaping
about the CoM (Yun et al. 2009). However, since the desired
angular velocity used to derive the desired inertia matrix is
computed about the CoP, it is preferable to perform inertia
shaping about CoP as well. Moreover, partial inertia shaping
about CoP is more effective than that about CoM because the
arm and the upper body configurations make more significant
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Fig. 7 Comparing inertia shaping about CoM (left) and CoP (right).
Shaded solid ellipsoids and ellipsoids with dashed outlines, in each
case, denotes current and desired inertia matrices, respectively. Note
that inertia shaping about the CoP allows a movement of the CoM (G
to G’), which the other does not

contributions to the CRB inertia about CoP. So, the desired
inertia matrix I; derived here is about CoP i.e., I 5 as shown
in Fig. 7.

5 Planning and selection of the optimal fall control
strategy

In the previous section, we described the general nature of
the two strategies that we use to change the fall direction
of humanoid robots. However, there are additional details
to pay attention to: a specific control needs to be selected
along with the associated parameters and it is to be exe-
cuted at a specific time and for a specific duration. Moreover,
the implemented control may contain the two strategies exe-
cuted either independently, sequentially or simultaneously.
We need a plan to coordinate and supervise these strategies.
This section describes this planning process, which is based
upon the geometric set-up of the robot in its environment, and
the computation of a few supporting quantities mentioned in
Sect. 3.

We have made the following assumptions in formulating
and selecting our controller:

— All motors stay active during the entire motion of the
robot;

— The robot can perfectly sense its states, including its
global position and all the joint angles;

— The robot knows the location and overall physical dimen-
sions of all the objects in its vicinity all the time >;

— The floor has enough friction to ensure no slip; and

— The robot’s feet are polygonal.

3 The actual determination of this is beyond the scope of this paper.

B Triggers fall control

V3

Balance
control

Certain Fall

Vi v,

Fig. 8 Schematic of Fall Trigger Boundary (FTB), a boundary in a
humanoid feature space that surrounds the region where the humanoid is
able to maintain balance. The axes in the figure represent different robot
features such as CoM coordinates, angular momentum components,
etc. The FTB represents the limit beyond which the robot controller
must switch to a fall controller. The shape and size of the FTB are
characteristics of a given balance controller

The last assumption is required to compute the estimated fall
angle for which we use the CoP location. For feet with curved
boundaries the CoP location may be continuously fluctuating
which may result in unstable computation of fall direction.

Under these assumptions, we discuss the process of pre-
diction of when and how the humanoid would fall, and talk
about the selection of proper direction-changing fall con-
trollers according to the falling behavior and the positions
and sizes of the surrounding objects.

5.1 Prediction of humanoid fall: fall trigger boundary (FTB)

The first step in entering a fall control mode is through the
fall predictor described in Sect. 3 and in Fig. 2. The predic-
tion of fall is a critical component of the fall management
strategy. The fall predictor helps decide when to switch from
a fall avoidance (or balance maintenance) controller to a fall
controller. A fall predictor continuously monitors the robot’s
state, and raises a flag as soon as it predicts an imminent fall.
A trigger from the fall predictor prompts the robot to abandon
the balance maintenance mode, which was just predicted to
fail, and to execute a fall control strategy.

As schematically shown in Fig. 8, the FTB of a robot
encloses aregion in its feature space in which a given balance
controller is able to stabilize the robot. An exit through the
FTB is an indication of an unavoidable fall and this event
can be used to activate the switch from the robot’s balance
controller to a fall controller.

The parameters that characterize the feature space can
include both sensor data such as joint angle and ground reac-
tion force (GRF), and any number of computed variables
such as CoM and CoP positions, robot lean angle, angular
momentum, etc.
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Fig. 9 Simple model of an inverted pendulum falling under gravity. P
is CoP, m is the humanoid mass, and ¢ is the lean angle between the
CoP-CoM line and the vertical. We use this model for the fast estimation
of time duration and other parameters of the robot

5.2 Fall mode detector (FMD)

In order to choose the correct fall strategy, it helps for the
falling robot to quickly estimate how it is going to fall. For
this, we approximate the robot as an equivalent inverted pen-
dulum as shown in Fig. 9. The pendulum connects the CoP
and CoM of the robot and has a point mass equal to the robot
mass. If the CoP is located on an edge of the support area, the
pendulum is constrained to rotate on a plane perpendicular
to the edge. In this case, we model the robot as a 2D inverted
pendulum. If instead, the CoP is located at a corner, the esti-
mation uses a 3D spherical inverted pendulum model. The
2D pendulum model has a closed-form solution. However,
since the 3D pendulum does not have closed-form solutions,
we simply simulate its dynamic equations for the period of
control duration. Because the control duration is typically
very short, this simulation can be adequately handled.

It might appear at first that the 3D inverted pendulum,
being a higher dimensional entity, would also exhibit the
behavior of the 2D pendulum, and that only the 3D model
would be sufficient to model a falling humanoid. However,
the motion of a 2D pendulum is constrained in its plane, and
it correctly models the motion of a falling humanoid that is
toppling about one of the edges of the feet. On the other hand,
the motion of the robot, which is toppling about one of the
foot vertices, is correctly modeled using a 3D pendulum.

5.2.1 Estimation of control duration

Time-to-fall is a critical parameter for the evaluation and
formulation of a fall response strategy. The biomechanics
literature contains some data on the time-to-fall of human
subjects. A simple forward fall of an adult starting from a
stationary 15° inclination takes about 0.98 s, whereas that
for a backward fall starting from stationary 5° inclination
takes 0.749 s (with flexed knees) and 0.873 s (with extended
knees) (Tan et al. 2006).
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The fall controller remains active until its lean angle
crosses a certain threshold @;presnora. We assume that all
external forces have disappeared when the robot starts to
use the fall controller. The control duration A7 is obtained
through an incomplete elliptic integral of the first kind for
the 2D inverted pendulum model (Spong et al. 2001) when
the lean angle goes over the threshold, i.e., AT is the time
for the pendulum to hit the threshold (not the ground). For
the 3D spherical pendulum model, we simulate its dynamic
equations to obtain AT.

5.2.2 Estimation of reference point

As mentioned before, the capture point is used as the refer-
ence point in this work. In order to estimate the capture point
at the time AT, we need the planar velocity of the robot.
Since we use a 2D pendulum model, the planar velocity can
be directly calculated from the angular velocity of the pen-
dulum.

For the 2D linear inverted pendulum model, the veloc-
ity after time AT is computed from the pendulum energy
equation as follows:

2E  2mgL cos(p(AT))
1 1

where E is the total energy (constant) of the pendulum, /
is the moment of inertia of the pendulum with respect to
CoP and L is the distance between its CoP and CoM. For the
spherical pendulum, the simulation of the dynamic equations
yields the velocity.

¢(AT) =

(16)

5.3 Geometric setup

In 3D space, both the robot and the surrounding objects are
approximated by circumscribing vertical cylinders centered
at their respective CoMs. On the horizontal projection, the
objects are represented by circles and the robot is represented
by a circle with its center at the CoM and the maximum leg
spread as its diameter as shown in Fig. 10a. We assume that
the position and size of the objects are known to the robot at
all times. Following the configuration space formulation used
in traditional motion planning algorithms (LaValle 2006), the
object circles are grown by the radius of the robot circle and
the robot is reduced to a point (Fig. 10b).

The entire planning process uses information in polar
coordinates (r, #) with the point robot at the origin (0, 0),
where r € R represents the distance from the point robot
and 0 € ® = [0, 2] represents the direction. The direc-
tion & = O represents the reference direction with respect
to which all objects’ positions and orientations are known.
Only objects within a radius of 1.5 times the height of the
robot are considered for the planning process and the other
objects are considered too far from the robot to be hit.



Auton Robot (2014) 36:199-223

209

B 5 mm Object

() (b)

Fig. 10 The 2D projection of a humanoid robot surrounded by obsta-
cles of different sizes. a The central red circle represents the robot. Its
center is located at the robot’s CoM and its diameter is equal to robot’s
maximum leg spread. The circles shown in green are the circumscrib-
ing circles of the objects’ 2D projections. b Following configuration
space approach, these latter circles are grown by robot’s radius and the
robot is reduced to a point. Safe fall regions (cyan cones enclosed by
the solid black curves) are the free cones in which the robot’s CoM can
fall without hitting an object

In this work, the fall direction 6y € @ is defined as the
vector connecting the robot’s initial and final CoM ground
projections. The initial state is at control trigger and the final
state is the touchdown of the robot with the ground, estimated
using inverted pendulum simulations. At fall trigger, all con-
trollers on the robot are assumed to be stopped and the joints
are locked with the robot behaving like a rigid body until
control trigger is reached. After control trigger is reached,
the only active controller is the safe fall controller. The fall
direction is independent of the intermediate configurations
of the robot, which implies that it is independent of the CoM
position during fall.

A safe fall region, characterized by an object-free cone,
is the set of continuous fall directions containing no objects
inside them as depicted by the cyan cones enclosed by the
solid black lines in Fig. 10b. These represent the set of direc-
tions in which the robot can fall without hitting an object.

5.4 Selection of the optimal fall control strategy

Each fall direction 6, receives two scores (si, sé), whose
weighted sum gives the total score s' = wlsi + wzsé, where
w1 + wy = 1. Intuitively s; represents how much relatively
safe the fall direction would be, and s, shows how close the
fall direction would be to the middle of the safe cone.

Note that the total score s is zero when the fall direction
0, is at the bisector of the largest safe fall region. Therefore,
lower the score, safer is the fall direction. w; and wj are
positive weights, and the equal weights (w; = wy = %) are
used in the simulations of this paper.

The planner evaluates and selects from three foot place-
ment strategies: (a) No Action, (b) Lift a Leg and (c) Take a
Step.

— No Action There is no attempt at controlling the robot
beyond locking all joints and letting the robot fall down
as arigid body. This strategy is adopted when the default
fall direction of the robot is already deemed safe.

— Lifta Leg This strategy is evaluated only when the robot is
in double-support phase. It involves two mutually exclu-
sive sub-strategies, (1) lift the left leg and (2) lift the right
leg. Lifting a leg reduces the extent of support base to a
single footprint. Although simple, this strategy can exert
significant influence on the toppling motion.

— Take a Step This strategy involves taking a step from the
robot’s current position. The number of possible stepping
locations provides a number of sub-strategies to be eval-
uated. The control duration AT calculated earlier in the
paper is used to estimate the allowable stepping region.

Inertia shaping strategies, presented in Sect. 4.2, are some-
times used in conjunction with, and at other times as a
replacement for, the foot placement strategies. We classify
these strategies as follows:

— Whole body inertia shaping This strategy recruits all
robot joints and employs inertia shaping on the entire
robot. The inertia shaping strategy replaces the foot
placement strategy when it fails to produce a safe fall.

— Fartial inertia shaping This strategy employs inertia
shaping using only those joints that are not involved in
the stepping.

5.5 Strategy selection flowchart

The strategy selection is done as presented in the flowchart in
Fig. 11. In case of steady fall, the fall direction estimation is
more accurate and the No Action and Lift a Leg strategies are
given preference over the Take a Step strategies because the
former are guaranteed for a successful completion. In case
of unsteady fall or when the No Action and Lift a Leg strate-
gies fail to produce safe fall, all foot placement strategies
are evaluated and their estimated fall directions are assigned
scores. The strategy with the minimum total score is chosen
to be the optimal safe fall direction. As one can see, even
when no foot placement strategy produces a safe fall direc-
tion, the algorithm chooses the strategy with the lowest score
that corresponds to the fall direction closest to the safe fall
region.

When no foot placement strategy produces safe fall, par-
tial inertia shaping strategy is coupled with the optimal foot
placement strategy. The bisector of the safe fall region closest
to the direction corresponding to the optimal foot placement
strategy is chosen to be the desired direction for the partial
inertia shaping procedure. This fall direction corresponds to

@ Springer



210

Auton Robot (2014) 36:199-223

Strategies: Start r
A - Mo Action = R
C—Take a Step Fall Trigger? G
D - Partial Body - G
Inertia Shaping Yes > E
e \Af‘hofe BPdV 7 No Wait Time R
Inertia Shaping Steady Fall? Sl
X g
Yes w
- Yes A
Contral Trigger I
o
Start Planning
Steady Fall?
Yes
P
Select Minimum B
Best Strategy: A Score Strategy A
N
N
1
N
G
Evaluate Select Minimum
A,B,C Score Strategy Best strategy: B
Best Strategy:
Best of (A,B,C)
Best Strategy:
D + Best of (A,B,C)
—)] Start Control l[(
Implement Best Strategy
C
(o]
N
Best Strategy: E T
Yes R
[0}
Turn off Mators? L

Fig. 11 Decision making procedure for safe fall planning and control

the local minima closest to the current fall direction. While
the optimal foot placement strategy tries to do the best it can,
the partial inertia shaping procedure tries to move the body
to the closest safe fall region.

The strategy selection procedure described above happens
only at control trigger whereas the strategy execution hap-
pens after it. At any future time after the execution of the
chosen strategy, if the robot’s fall direction is still unsafe, the
whole body inertia shaping is initiated, because that is the
only method available at that point. The bisector of the safe
fall region closest to the current fall direction is chosen to be
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the desired direction of fall and the inertia shaping procedure
tries to achieve it.

Finally, if the robot’s lean angle exceeds a maximum
threshold, all the motors are turned off, i.e., all joints are
unlocked, in order to reduce the damage to the motors due to
impact.

6 Simulation results

Our fall controller has been executed in the Webots simula-
tion environment for a human-sized humanoid and an Alde-
baran NAO robot. In order to handle the different platforms
seamlessly in simulation and experiment, we developed a
modular software architecture which focuses on an interface
to connect a robot controller to specific applications.

6.1 Full-size humanoid robot

The full-sized humanoid robot that we used for simulation
study is 1.3 m tall and weighs approximately 54 kg. The robot
possesses 26 DoF and each leg has 6 DoF. The resolutions of
the cells used in Eq. 7 are 50 mm for (x, y) and 0.1 rad for .
A control sampling time is 1 ms. We assume that the global
locations and orientations of the robot bodies are given.

6.1.1 Fall while avoiding a single object

We start from direction-changing fall with a single object,
since a single object means a sole desired fall direction that
is obviously opposite to the object direction. Unlike a clut-
tered environment, in this case we can easily see the desired
direction and compare it with results from our fall controller.

Figure 12 shows snapshots of the simulation, where the
humanoid stands on both feet and is subjected to a push on
its trunk for 0.1 s. The push has a magnitude of 200 N for-
ward and 50 N to the right. The target for the humanoid to
avoid is located 1.2 m in front of it, and the head of the
humanoid would hit it without any fall control. The fall con-
troller starts 0.05 s after the push has ended. Inertia shaping,
if used, begins to work as soon as the swinging foot con-
tacts the ground. During direction-changing fall control, the
support base changes from a rectangle to a point, then to a
quadrilateral and back to a rectangle, as shown in the bottom
row of Fig. 12.

The direction of fall changes, as expected, according to
support base geometry change. When the humanoid is on
double support, it topples forward and rotates about the front
edge of the support base for which the CoP is located roughly
in the middle. Once the robot lifts the right leg to Take a Step,
it starts toppling around the right top corner of the left foot
and the support base shrinks to a point, as shown in Fig. 12b.
Taking a step makes the support base polygon a quadrilateral,
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Fig. 12 Top row pictures are snapshots of falling humanoid with
changing support polygon. The bottom row figures show the chang-
ing support polygon, the CoP and the capture point. The yellow region
is the support polygon. The green square is the object to avoid. The
small red square is the CoP, and the cross mark is the reference point.
These two points are connected by the blue line which also shows the
estimated direction of fall. a The humanoid gets a forward push. The
direction of the push is shown by the red arrow from the body. The
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Fig. 13 Snapshots of a falling humanoid which uses both step con-
troller and whole body inertia shaping controller. The push is the same
as in Fig. 12. Inertia shaping starts after taking a step. The humanoid

as shown in Fig. 12c¢, and the direction of fall goes to the right
since the reference point is at the right of the support polygon.
Finally, the humanoid achieves the rightward fall direction.

Figure 13 shows the motion of a falling humanoid which
employs both the support base geometry controller and whole
body inertia shaping controller. After taking a step as shown
in Fig. 13b, the humanoid changes the fall direction by rolling
the upper body backward, see Fig. 13c.

Comparison of the CoM trajectories for the three different
cases of no control, support polygon change, and support
polygon change plus inertia shaping are shown in Fig. 14. The
figure clearly shows that the trajectory of the full controller
diverges from the trajectory of the support polygon change
and goes backwards.
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support polygon is a rectangle formed by the two feet. b The humanoid
has lifted the right foot to Take a Step. Since the robot is toppling its
support polygon is simply a point, and it is coincident with the CoP.
The reference point implies that the falling direction is toward left. ¢
The humanoid has taken a step. The support polygon is a quadrilateral
formed by four points of the right foot and the right-forward corner of
the left foot. d The humanoid is falling towards its right, rotating about
the rightmost edge of the right foot

(d)

appears to lean its body backwards as if it does limbo. After the con-
clusion of inertia shaping, the humanoid has fallen almost backwards

6.1.2 Fall while avoiding multiple objects

In this case, the robot’s environment contains four objects as
shown in Fig. 15. The robot is pushed at the CoM of its trunk
with horizontal forces of different magnitudes and directions;
and the performance of the safe fall controller for each case
was analyzed. All forces are exerted for a duration of 100 ms.

When the robot is pushed with a backward force of 210 N,
the default fall is already safe. Our planning procedure suc-
cessfully detects steady fall and chooses No Action as the
best strategy, which results in a safe fall as shown in Fig. 15.
Figure 16 shows the safe fall behavior as a result of choosing
Lift a Leg strategy after identifying a steady fall when pushed
with a forward force of 210 N.
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Fig. 14 Simulation plots of CoM trajectories (left) and avoidance
angles (right) of a falling humanoid which was pushed during upright
standing. The avoidance angle between the robot’s fall direction and the
direction of the nearest obstacle is computed using the lean line which
extends from the CoP to the CoM. The humanoid falls on the single
target without any control, which corresponds to a 0° avoidance angle.

Fig. 15 The robot is pushed with a backward force of 210 N, for a
duration of 100 ms. The default fall direction is already safe. The No
Action strategy is chosen in this case

Fig. 16 The robot is pushed with a forward force of 210 N, for a
duration of 100 ms, at the CoM of its trunk. The default fall direction
is towards the object in the front. a The robot lifts the left leg to change
fall direction; b this results in a safe fall at an empty space

Figure 17 shows the safe fall behavior as a result of choos-
ing Take a Step and Partial Inertia Shaping. As expected, we
can see significant arm motions in this case, and the robot
falls in the forward left direction.
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Intelligent stepping improves this avoidance angle to 100° and inertia
shaping further improves to 180°. The oscillation of the avoidance angle
is the result of the oscillation of the CoP, which is often caused by a
rocking motion of the robot when it does not have a firm and stable
contact with the ground

Fig. 17 The robot is pushed by a forward force of 235 N for 100 ms.
a The robot is taking a step and moving arms to perform Partial Inertia
Shaping. b Safe fall occurs as a result of Take a Step and Partial Inertia
Shaping strategies. The green line shows the unsafe fall direction if
partial inertia shaping were not used

Fig. 18 The robot is pushed with a force of 370 N for a duration of
100 ms, to its right. a Whole Body Inertia Shaping starts when none of
the foot placement strategies produces safe fall and b safe fall occurs
as a result

InFig. 18 we consider a case with a stronger push force for
which the stepping + PIS strategy was not successful, and the
controller resorts to the use of whole body inertia shaping.
In Fig. 19, we compare No Action, Take a Step and Partial
Inertia Shaping strategies when the robot was pushed with a
forward force of 235 N, for a duration of 100 ms. The CoM
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Fig. 19 Comparing the performances of different strategies. NA No
Action, TS Take a Step, and PIS Take a Step followed by Partial Inertia
Shaping. The CoM trajectory during each strategy execution is shown.
The robot is pushed with a forward force of 235 N. Only PIS produces
safe fall

trajectories show that the safe fall was produced by using
Partial Inertia Shaping coupled with Take a Step strategy.

All the above results are for cases where the robot was
standing stationary upright when pushed. We also success-
fully tested the fall control strategy for a few cases where
the robot was pushed during walking. One result is shown in
Fig. 20. The main objective of this exercise was to insure that
the control algorithm works in the walking regime. However,
we simulated a very slow gait in which the robot took a 15 cm
long step in 1.5 s, resulting in a 0.1 m/s speed for the feet and
0.75 m/s speed for the body. In this case, because the robot
is already in the single support state, it cannot use the Lift
a Leg strategy. Other than this difference, the rest of the fall
strategy described in Fig. 11 was employed unchanged and
without any special modification for non-stationary condi-
tions. More exhaustive experiments of humanoid fall during
gait is necessary and is planned for the future.

Note that the location and direction of the push on the
humanoid body will change the optimal solution of the
direction-changing fall because they will affect the states
of the reduced model, the 2D and 3D inverted pendulums,
which are used in the fall controller. For example, the same
push to the head of the robot will result in higher rotational
velocity compared to a push at a lower point on the body,
Consequently, the results can be quite different.

6.2 Aldebaran NAO robot

In order to implement the direction-changing control on the
NAO robot, we first need to address a few issues specific to
this humanoid robot. The NAO robot is 57.3 cm tall, pos-
sesses 24 DoF and weighs 5.2 kg. Each arm of NAO has
5 DoF and each leg has 5 DoF. The head has 2 DoF and the
pelvis has a 1 DoF joint. Also, each hand has a 1 DoF joint.

Fig. 20 a The robot is pushed with a 200 N forward force while walk-
ing, b Take a Step was the optimal strategy. This stepping location is
different from the step the robot was about to take while walking. ¢
Resulting safe fall

The kinematic structure of this robot is unique in that its
two legs have a shared joint which connects the body to both
legs. The actuator of the shared joint is located at the inside
of the hip and rotates the two first joints of the both legs at the
same rate, therefore the two joints cannot be controlled inde-
pendently. Consequently, our inverse kinematics and inertia
shaping algorithms must be updated.

One way to treat this shared joint is to imagine an asym-
metry in the legs where any one leg can have 6 DoF and fully
possesses the pelvic joint while the other leg has 5 DoF. This
asymmetry raises a problem in solving the inverse kinematics
since most humanoids have two 6 DoF legs and the typical
inverse kinematics solution for a 6 DoF link can be used for
both legs. In order to use our fall controller on NAO, we
design a Jacobian-based inverse kinematics for this special
joint configuration, which enables stepping as well as control
of the body posture.

Suppose that both legs of the robot have firm support on
the ground. In Eqgs. 1 and 2, §7 is a 5 x 1 joint angle vec-
tor of the left leg, and O is a 6 x 1 joint angle vector of
the right leg. Consequently, the foot-to-foot Jacobian matrix
Jr_1 becomes a 6 x 11 matrix.

In order to simultaneously control the location of the body
frame (6 DoF) and the step location (6 DoF) we need a total
of 12 DoF. This is relatively straightforward when each leg
possesses 6 DoF. However, for the NAO H25 robot, we lack
1 DoF because the two legs have a total of 11 DoF. To deal
with this we design a cost function for the inverse kinematics
algorithm to minimize:

min [|Vg_r —Jr_rA0|* + 2% | A0]* +
2
| Vioay —JrAOR|", (17)
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where Vr_r = Vr — V in which V and V[ are the
velocities of the right and left foot, respectively, Viyoqy is
the velocity of the trunk. These quantities were introduced
in Eqgs. 1, 2 and 3. A and € are constant weights. The para-
meter € controls the relative importance between the step
displacement and the body displacement. For example, a
low € puts higher priority on the step displacement. A regu-
lates the control output Af. Note that this inverse kinemat-
ics is another version of the damped least-squares solution
(Buss 2004).

This cost function pursues the simultaneous control of the
body location and the step displacement while minimizing
the total joint angle displacements. Equation 17 can be re-
written as follows:

2
Jr-L Vr-L

min M A0 — |0 , (18)
eJg O €Viody

which leads to the following inverse kinematics solution:

T —1_
40 = (77 + 1) JTm?ﬂ, (19)
ody
where
= | Jr-L

Figure 21 shows an example of NAO falling due to
an impact push on its head and how the controller per-
forms according to the proposed strategies with inertia
shaping. The robot initially stands on both feet, and is
subjected to a forward push which has an impulse of
2.5 Ns. The four green columns are objects that the robot
should avoid touching during the fall. Without a fall con-
trol, the robot collides with the front column as shown in
Fig. 21b. The latter figures show the effect of using dif-
ferent fall strategies. Simply lifting the left leg dramati-
cally changes the fall direction as shown in Fig. 2lc, d.
Take a Step strategy enables the robot to change the fall
direction to the front right as shown in Fig. 2le, f. The
resolutions of the cell used in Egs. 5-7 are 10 mm for
(x,y) and 0.1 rad for B. The inertia shaping strategy can
enhance the performance by creating angular momentum
in order to indirectly modify the fall direction as shown in
Fig. 21g, h.

Figure 22 contains two plots showing the convergence of
two components of the overall angular velocity of the robot to
their desired values, which is controlled according to Eq. 10.
This control is achieved through the indirect control of the
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Fig. 21 Examples of direction-changing humanoid fall through the
proposed control strategies. The NAO robot is surrounded by four green
columns, which the robot should avoid hitting during a fall. The regions
enclosed by the solid black lines and curves are safe cones. Planning
of the controller takes place in the C-space. a The robot is pushed from
behind by a 2.5 Ns magnitude impulse. The thick red line depicts the
push. b Without the fall controller, the robot ends up hitting the front
object. ¢ Lift a Leg strategy is used and the robot lifts the left leg so that
the support area is modified. d The robot falls to the front left instead
of the front. e The robot uses Take a Step strategy to change the fall
direction. f The robot lands on the front right safe region. g Inertia
shaping is used with the foot lifting strategy. h The robot falls to a safe
region

robot’s locked inertia. The plots correspond to simulation
shown in Fig. 21g, h. The angular velocity components are
shown to successfully converge to their desired values wj.
The chattering like behavior of the angular velocity results
from the back and forth motion of the CoP.
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Fig. 22 The two plots show the effect of angular velocity control
through momentum. The plots correspond to simulation run shown in
Fig. 21g, h. The two components of the normalized angular velocity are
shown to successfully converge to their desired values w,. The chatter-
ing like behavior of the angular velocity is the result of back and forth
motion of the CoP

7 Experimental results of fall direction change

We have experimentally evaluated our fall controller in hard-
ware using the Aldebaran NAO H25 robot. In this section we
describe these experiments and also compare the experimen-
tal results to the simulation. Before we perform the experi-
ments a few technical problems need to be solved.

7.1 Estimation of global position and foot/ground contact
point

The biggest challenge for the experiment is to estimate the
global posture of the body frame while the robot is falling. In
simulation, this information was readily available. However,
during the experiment we have to estimate it using an IMU
and force sensitive resistors (FSR) in the feet. The estimation
is relatively easy when at least one foot has a firm contact
with the ground. The relative 3D transformation between the
foot and the body frame use its global position in a forward
kinematics problem. However, when the robot is falling, its
feet can lose the firm ground contact, and we need to depend
on the IMU for the computation of the body coordinate frame.

Unfortunately, the built-in IMU in the NAO robot has only
two gyroscopes and three accelerometers, which can com-
pute only the roll and the pitch angles. The yaw angle of the
robot would be missing. This may suffice when the robot has
a firm contact on the ground, but not when foot toppling is
involved. To estimate the missing yaw angle, we attached an
additional IMU with three gyroscopes and three magnetome-
ters externally on the robot’s back, as shown in Fig. 23.

Yaw angle measurement

Yaw angle (degree)
B
o

] 5 10 15
time (sec)

(b)

Fig. 23 a Anadditional IMU is attached on the back of the NAO robot.
b Measured yaw angle when the robot is manually rotated by about 90°
and returned to 0°

Note that even three accelerometers and three gyroscopes
are not sufficient for a reliable estimation of the yaw angle;
the three axis accelerometer gives only two reference angles
for roll and pitch and the yaw angle estimation should solely
rely on the gyro sensor information, which suffers from drift.
From the additional IMU, the yaw angle is estimated using
the planar heading of the sensor which is obtained from a
magnetic compass output. Kalman filters (Welch and Bishop
1995) have been implemented for robust estimation of the
roll and pitch angles.

Given these estimated orientations, the position of the
body is still missing. In order to estimate it, we use the rel-
ative pose between the contact point and the body given the
assumptions of no slip, no movement of contact point and
a polygonal foot geometry. If the robot does not experience
any slip and maintain the contact point during the fall, the
contact point can be referenced for global position. Figure 24
shows an example of the falling robot. The point is that we
can obtain the estimated orientation of the body frame (i.e.,
body rotation matrix R(b) in the global body transformation
Tg) and the estimated location of the foot contact point (i.e.,
position column P? in the global contact point transforma-
tion T?.). Combining them results in the full posture of the
body frame.

The following equation describes the relative posture
between the contact point and the body frame:

1T = T9, 21

which is equivalent to the following:

R P°7,.. [RY PO
|:Oc 1ci|TlL7=|:0b lbi|7 (22)

where 7 is the transformation matrix and R and P are the rota-
tion matrix and the position vector, respectively. The super-
script and the subscripts 0, ¢ and b refer to the global frame,
the contact point frame and the body frame, respectively. In
Eq. 22, the orientations of the contact point R? and the posi-
tion of the body frame Pg are unknown given the joint angles.
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Fig. 24 Coordinates of the body and the anchor foot. C is the
foot/ground contact point. T? is a global frame of the contact point.
and Tg is the global body frame. Note that the transformation from the
foot to C with respect to the foot is constant

Equation 22 can be rewritten as:

R? = R)R® (23)
P) = ROPS + P, (24)
since
RS P§
c _ b b

In order to estimate the foot/ground contact point during
fall, again we assume no slip and non-changing contact point
during fall. Unlike during simulations where the contact point
information could be directly obtained, we have to estimate
it during the experiment. Since we also assume the foot area
is a polygon, the contact point can be either an edge (the
robot topples like a 2D inverted pendulum) or a vertex (the
robot falls as a 3D inverted pendulum). We determine this
from the four FSRs on each foot. At every control sampling
time, the controller checks the values of the FSRs and sets
on/off states of the sensors from a tuned threshold. From
empirical data, the controller estimates that the contact is
over an edge when two adjacent FSRs are ON and their values
are equivalent while the other two are OFF. If one of them
has a significantly higher value than the other, the controller
interprets this a vertex contact.

A hardware implementation of the fall controller on the
NAO robot must factor in its limited capabilities of sensing
and control. The main differences between the simulation and
the experiment are listed in Table 1. The strategies described
in Sect. 5.4 are utilized.

7.2 Experimental results

A set of four experiments is designed to show the effect of
the proposed strategies. The experiments start with Lift a Leg
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Fig. 25 Default case: without direction-changing fall controller, the
NAO robot, when pushed from behind by a linear actuator, falls forward

Fig. 26 Snapshots of the fall experiment. Robot uses the Lift a Leg
strategy. a The robot lifts up the right leg. b The robot falls almost
completely to the right

strategy, advance to Inertia Shaping with two different push
directions, and show Take a Step strategy.

In the first experiment, the robot gets a steady push from
behind until it switches to fall control mode and the proposed
strategies are utilized. For repeatability, we use a linear actu-
ator to give a push to the robot (the machine visible behind
the NAO robot in Fig. 25). The controller runs on an external
laptop connected to the robot via a wired network. The lean
angle of the robot estimated from the IMU is used to trigger
the direction-changing fall controller.

Without a fall controller, the robot falls forward as shown
in Fig. 25. Figure 26a, b demonstrate that the Lift a Leg strat-
egy can make a significant change under the same push. The
robot lifts the right leg to change the fall direction and falls
almost to the right. We tested two Lift a Leg strategies, one
of which lifts the left leg and the other lifts the right leg, and
the resultant CoM trajectories are compared in Fig. 27a.

According to Fig. 27b, our fall controller seems to over-
predict the resultant fall angles. We think that this difference
is caused mainly due to the change of the foot/ground contact
point during fall. The prediction comes from considering the
robot as a 3D pendulum with a fixed contact point, which
becomes invalid when the foot/ground contact point moves.
For example, in Fig. 26a, the foot/ground contact point is
at the front-right corner of the left foot, which our controller
correctly estimates and the predicted fall angle is 114°. How-
ever, somewhere between Fig. 26a and b, the 3D fall motion
of the robot causes the right edge of the left foot to become
the foot/ground contact edge. This prevents the robot from
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Table 1 Direction-changing fall: difference between simulation (Nagarajan and Goswami 2010) and experiment

Simulation

Experiment

e Faster control sampling time (1 kHz)

e Perfect knowledge of exact global position of the body frame
e Perfect sensing of joint angle, velocity and acceleration

e Perfect knowledge of foot/ground contact points

e Polygonal feet

e Perfect knowledge of exact timing of push

e Slow control sampling time (*30 Hz)

e Noisy estimation of global position of the body frame
e Only joint angles sensed

e Imperfect estimation of foot/ground contact point

e Feet perimeter is curved

e Timing of push is unknown

CoM trajectories
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Fig. 27 a CoM trajectories of the robot during the Lift a Leg strategies.
The circles denote the end of the trajectories. The solid blue curve is the
CoM trajectory of the falling robot without a fall controller, and the dot-
ted green and dashed red curves are trajectories from our fall controller
by lifting the left and right leg, respectively. The forward direction is
displayed by the black arrow. (b) Measured fall angles with respect to
the Lift a Leg strategies and their estimations shown as horizontal lines
at the top and bottom. The differences between estimations and exper-
imental results mainly from the fact that the foot/ground contact point
changes over time during fall

rotating further backwards, and the robot ends up falling to
the right (around 90°). In future work, this issue should be
addressed in order to obtain better prediction accuracy.

In the next experiment, in order to test the effectiveness
of inertia shaping, we performed an experiment to see if
through inertia shaping we can cancel the effect of fall direc-
tion change, which was originally achieved through foot lift-
ing. As seen in Fig. 26, lifting of the right foot causes the
robot to fall toward its right. In the following example, after
foot lifting, we execute inertia shaping using the forward
direction fall as the objective. As seen in Fig. 28a, b, inertia
shaping is shown to have successfully canceled the effect of
foot lifting and the robot falls forward. Note that the arms
are stretched to maximize the effect of inertia shaping. In
another inertia shaping experiment, we can make the robot
fall diagonally, under the same forward push, as shown in
Fig. 28c, d. Figure 29 shows how inertia shaping changes the
CoM trajectory.

The third experiment checks the effect of pure inertia shap-
ing without involving any stepping. In this experiment, only
inertia shaping is used to change the fall direction. In the
experiment described in Fig. 28, the robot had very short
time for inertia shaping because it spends a part of the fall
time in lifting up a leg. In order to have more control time
dedicated to inertia shaping, in this experiment we start from
a single support pose of the robot as shown in Fig. 30a. The
robot is pushed from the left and falls to the right without iner-
tia shaping. Two independent experiments of inertia shaping
with 0° (forward) and 45° (forward right) desired fall angles
are implemented. The success of this experiment is evident
in the resultant CoM trajectories as shown in Fig. 30b.

In the fourth experiment, Fig. 31 shows snapshots of the
experiment for Take a Step strategy. A push comes from the
left of the robot which is supported by the left foot only.
The controller modifies the support area to change the fall
direction to 45° (right forward). The support area changes
from arectangle to aline and then to a pentagon. The direction
of fall changes, as expected, according to support area, and
the resultant trajectory of the CoM is shown in Fig. 32 in
which the robot also takes a step to change the fall direction
to —45° (right backward). When the humanoid is on single
support in Fig. 31a, it topples to the right and rotates about
the right edge of the support foot as shown in Fig. 31b. Once
the robot takes a step with the right foot rotated by 45°, the
support base extends to a pentagon as shown in Fig. 31c. The

@ Springer



218

Auton Robot (2014) 36:199-223

(a) (b)

Fig. 28 (Top row) Snapshots of the fall experiment with Lift a Leg
strategy and inertia shaping. (Bottom row) Snapshots of the fall simula-
tions which have the same goal fall direction as the experiments. a After
lifting up the right leg, the robot starts inertia shaping with the objec-

CoM trajectories
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Fig. 29 CoM trajectories. The solid blue curve is the trajectory of the
falling robot without any control. The dashed green curve corresponds
to the Lift a Leg strategy. The dotted red curve is for the controller with
inertia shaping with forward fall as the goal. The dot-dashed cyan curve
is the result of inertia shaping with right forward fall as the goal. The
circles denote the end of the trajectories

direction of fall goes to the right forward since the reference
point (capture point) is at the right forward of the support

polygon.

7.3 Comparison with simulation results

The bottom row figures of Fig. 28 show motions from sim-
ulations, which correspond to the experimental results with

the same strategies and goals that are shown in the top row
figures. In terms of the CoM trajectories, Fig. 33 shows the
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tive of canceling the effect of the Lift a Leg strategy. b Inertia shaping
successfully makes the robot fall almost forward. ¢, d The robot uses
inertia shaping to fall diagonally forward after lifting up the right foot,
and inertia shaping is reasonably successful

CoM trajectories
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Fig. 30 Effect of inertia shaping during fall. a The NAO robot is in
single support on the left leg when it is pushed from the right. b CoM
trajectories with/without inertia shaping. Without inertia shaping, the
robot falls to the right (solid blue curve). Two tests of inertia shaping
with target angles of 45° (dotted red curve) and 90° (dashed green
curve) are used to change the fall direction. The circles denote the end
of the trajectories

comparison between the trajectories. We see that the appar-
ent motions in the experiments match well with those seen
in the simulations though the specific states such as CoM
trajectories are not identical.

In the experiment, we often encountered a problem due
to lack of motor power in the experiments. Even though we
use the same maximum joint speed and torque as in the sim-
ulations, motors subjected to high load often could not fol-
low the desired trajectories and stalled as a consequence.
During a fall, the robot is likely to be unbalanced and some
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Fig. 31 The top row pictures are snapshots of falling humanoid with
changing support polygon. The bottom row figures show the support
polygon and Capture point. The small red square is Capture point. The
dashed blue arrow is the estimated fall direction. a The support area
is a rectangle formed by the left foot. Capture point resides inside the
support area. b The robot is toppling after the push, and the support area
in the inner edge of the left foot. Capture point is at the right, which
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Fig. 32 CoM trajectories when the robot uses the Take a Step strategy.
Two target falling angles (£ 45°) are used. The solid blue line is the
COM trajectory of the falling robot after a push from the left. The
dashed green curve is from the Take a Step strategy with the 45° target
angle, and the dotted red curve is for —45° target angle. The solid circles
denote the end of the trajectories

implies the robot is falling to the right. ¢ The robot has taken a step,
and the support area is a pentagon formed by the contact points of the
two feet. Capture point is out of the support area, and the robot falls
diagonally as we intended. The target falling angle of the controller is
45° (right forward). The CoM trajectory of this experiment is shown in
Fig. 32
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Fig. 33 CoM trajectories of the experiments and simulations in Fig 28.
Lift a Leg and Inertia shaping strategies are used. Two target falling
angles ( 90° and 45° ) are used. The solid blue curve is for the sim-
ulation with the 90° target angle, the dashed green curve is for the
experiment with the 90° target angle, the dotted red curve is for the
simulation with 45° target angle, and the dash-dotted cyan curve is for
the experiment with the 45° target angle, The solid circles denote the
end of the trajectories
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joints would be under high gravitational load. Therefore, dur-
ing fall control, the desired motion cannot be met since the
joints cannot be actuated properly. In the experiment shown
in Fig. 28c, d, we found that the hip roll joint did not follow
the desired trajectory, which caused a distorted motion and
the resulting fall direction diverged from what was obtained
in the simulation. This lack of power also makes it hard to
achieve consistent results in the experiments. Given the same
initial condition including a push, the robot may take the right
action expected in simulation when every joint follows the
desired trajectories but may not when any controlled joint is
stalled. Thus, currently the capability of our fall controller is
limited by the hardware specifications.

Also, the maximum rotational speed of the actuators did
not match those that were obtained in the simulation. For
example, the simple action of lifting-up a leg by the same
height takes longer time in the experiment compared to that
in the simulation. This means that we have smaller time to
execute motions needed for the inertia shaping. The differ-
ence between the trajectories of Fig. 33 with 90° target angle
comes from this speed limit. Since lifting-up takes more time
in the experiment, inertia shaping starts working later in the
experiment, and the moving-right CoM leads the lifted foot
to touch the ground in the experiment before inertia shap-
ing generates enough momentum to pull the CoM forward.
This touch may leave a noisy trajectory due to the change of
the contact point during fall. Note that we estimate the body
posture based on the consistent contact point.

However, we can incorporate actual torque and velocity
limits if we know them beforehand. Since the current NAO
API does not support velocity control used in simulation,
we had to modify the velocity controller into a position con-
troller. This controller modification and the slow control sam-
pling time in the experiment (~30 Hz) sometimes caused
jerky motion.

8 Conclusion and future extensions

This paper reported the theory and hardware experiments of
direction-changing fall control of humanoid robots among
multiple objects. The fall controller contains a planner which,
for a given set of surrounding objects, assigns merit scores
to each direction around the robot. The scores depend on
the position of the objects relative to the robot, and their
sizes, which the robot is assumed to know all the time. The
merit scores indicate the desired fall direction of the robot.
The planner then logically evaluates the control strategies
available to the robot and determines the best strategy or
set of strategies to fall in the desired direction. The robot
controller executes this strategy in an interactive manner such
that real-time modifications can be made in case there is a
risk of failure.
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The robot employs two basic control strategies at its dis-
posal, the foot placement control and the inertia shaping
control. The foot placement control optimally changes the
geometry of the foot support polygon of the robot in order to
influence the evolution of the CoP on the polygon and indi-
rectly control the fall direction. This strategy contains three
components, No Action, Lift a Leg (left or right leg), and Take
a Step (left or right step), all of which the planner evaluates
separately. The inertia shaping control aims at appropriately
modifying the global inertia of the robot, such that it pos-
sesses a desired angular momentum, thereby attaining the
desired fall direction. The inertia shaping control can either
recruit all the joints of the robot body, which is called whole
body inertia shaping, or only those joints that are not used
for foot placement, which is called partial inertia shaping.
The controller employed whole body inertia shaping when
all other strategies were predicted to fail or when the selected
strategy was sensed to leading to a failure. Several successful
safe fall behaviors under a variety of external disturbances
were demonstrated in simulation on a full-sized humanoid
model and a smaller humanoid robot, the Aldebaran NAO
H25. Hardware experiments on the NAO robot were also
reported.

The theory and implementation of our direction-changing
fall control have shown acceptable performance, however
they also have revealed a few points for future discussion.

The planning procedure presented in this paper makes
the following assumptions: (i) the fall direction estimated
using an inverted pendulum approximation of the robot favor-
ably compares with the actual fall direction, (ii) all strategy
executions are complete, i.e., the robot is able to reach the
desired configuration corresponding to the strategy before
it touches the ground. Using more sophisticated models for
better prediction of the terminal fall direction is one of the
future avenues of this research. The falling motion of a
robot is complex and it is hard to tightly control it because
of underactuation. Estimation errors can accumulate very
rapidly.

The second assumption is relevant for the performance of
the fall controller. An example of an incomplete strategy is
when the robot topples too far and hits the ground before
the stepping controller gets enough time to extend the swing
foot fully. This can happen at large inclination angle of the
robot. In order to prevent this, the fall controller should select
a plan that is based on a shorter execution time. However, we
pay a price for this in terms of the performance of the fall
controller. An incomplete optimal plan is not comparable to
other plans, and can result in a complete failure.

A robot can be controlled to physically interact with
objects in its surrounding during the fall and can advan-
tageously modify the fall direction. This interaction can
involve holding or pushing on a nearby wall or on a furniture.
Also, the current work assumed that the objects surrounding
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the robot are stationary. This restriction can be relaxed and
the algorithms updated to factor in moving objects such as
humans.

Currently, the merit score based determination of the
desired fall direction only considers the location and size of
the objects with respect to the robot. There is no consideration
either of the speed, the direction of movement of the robot or
the direction of the disturbance force. Using these factors can
refine the fall direction significantly. An important practical
issue on the topic of fall control is the challenge of quantita-
tive determination of the capabilities of the controller. This
is necessary to provide a workable guideline for the robot
user.

Most of the simulations and experiments are performed
with the robot at the stationary upright condition. The main
reason for selecting this posture is to introduce repeatability
in the experiments and in the evaluation process. For exam-
ple, we found it fair and repeatable to compare two fall con-
trol scenarios against a disturbance, both starting from the
stationary upright initial pose. However, when the robot is
walking, itis very difficult to compare the performances since
it can vary greatly with very small differences in the initial
robot states. Although we have tested a few isolated cases,
our work on this important topic has not been exhaustive. The
application of fall controllers on fully walking humanoids
and their appropriate evaluation is one of the major topics
for the future work. This study should also include the rela-
tionship between the walking speed and direction and the
direction of fall.

An interesting avenue for future study is the effect of foot
shape on the nature of fall. It is conjectured that small modifi-
cations in foot shapes can make it easier to change the robot’s
fall direction.

Since our experimental validation is limited to a small
robot, implementing our fall controller on a full sized robot
hardware will be an interesting future research topic. We
actually expect better performance for a larger humanoid
since the larger size allows a longer fall duration that gives
more room for the fall controller such as a larger allowable
stepping zone and longer execution of the inertia shaping
control.

In this work we have introduced the concepts of fall trig-
ger and control trigger. Developing robust fall trigger and
control trigger would be essential, however it is extremely
challenging since they are likely dependent on a number of
variables such as a specific balance controller and the robot
states.
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