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We set out to answer the question: At what hitch angle does it become impossible for a vehicle and
trailer to continue to backing up without getting into a jackknife? Jackknifing during backing up of
trailers occurs when the hitch angle increases to a point such that the vehicle and trailer fold together
about the hitch point like a jackknife. If the backward motion is continued, the jackknife effect pro-
gressively worsens, until the vehicle and trailer are in physical contact with each other. Jackknifing
can result in traffic disruptions and wasted time, and can potentially cause damage or personal injury.
Our goal is to analytically determine the ‘critical hitch angle’ (θcr), the hitch angle threshold beyond
which a continued reverse motion causes an inescapable jackknifing. In this paper, we provide a for-
mal definition of θcr for slow backing up of vehicle–trailer systems on a level solid surface, beyond
which the vehicle must stop backing up and revert to forward motion in order to escape from jack-
knifing. The critical hitch angle is sub-categorised into Absolute (θcr,a) and Directional (θcr,d) critical
hitch angles depending on the operating constraints and vehicle steering objectives. One solution
for θcr is posed as a numerical solution to the steady-state conditions of the dynamic equations. The
effects of such hitch angle limitations are demonstrated through simulation. Also, a warning system
making use of the θcr is proposed. Such warning systems can assist drivers in avoiding jackknifing
while backing up a vehicle–trailer system.

Keywords: critical hitch angle; pull forward; point of impasse; jackknife; trailer; trailer steering;
backing up; hitch angle; numerical minimization

1. Introduction

We set out to answer the question: At what hitch angle does it become impossible for a
vehicle and trailer to continue backing up without getting into a jackknife configuration?
Jackknifing during backing up of trailers occurs when the hitch angle increases to a point
such that the vehicle and trailer fold together about the hitch point like a jackknife, hence
the name. If the backward motion is continued, the jackknife effect progressively worsens,
eventually resulting in physical contact between the vehicle and the trailer. The lack of direct
control of the trailer can result in annoyance and wasted time to the driver and in the worst
case scenario, can cause physical damage or injury.

In the traditional literature, a kinematic threshold based on the relative orientation between
the vehicle and trailer is used as the condition for jackknifing,[1–4] however, it is ad hoc and
not based on any analysis. This approach has limited benefit because it does not give us any
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2 J. Chiu and A. Goswami

Physical contact  
(geometric criterion) 

 Kinema�c criterion 
to each other 

Empirically  
determined 

(a) (b) (c)

Figure 1. Critical hitch angle can be based on (a) actual physical contact between a vehicle and trailer, (b) a
kinematic criteria where the vehicle and trailer are perpendicular or (c) an empirically defined threshold. The
green-shaded area in each case shows the permissible hitch angle range in which the trailer centreline can lie.

indication of how such a condition might change with a variation in kinematic and dynamic
vehicle–trailer parameters. In this paper, we would like to determine the conditions that lead
to an inescapable jackknife under continued reverse motion. In particular, our interest is to
find the onset of inescapable jackknifing because such an information can be used to warn
drivers of the impending problems. For slow backing up of a vehicle–trailer system, we seek
to analytically find the critical hitch angle θcr, beyond which the vehicle must stop backing
up and revert to forward motion in order to extricate itself from a jackknife configuration.

The idea that there exists some threshold condition, the crossing of which necessitates
forward motion to prevent jackknifing exists in the literature.[1,2,5–8] However, mathe-
matical models only exist for single-axle trailer systems, which uses the assumption of
no-slip motion. In [9], the critical hitch angle for a single-axle trailer is not explicitly
referred to, but the authors demonstrate that based on an initial hitch angle and fixed steer-
ing angle, certain configurations result in an increasing hitch angle and eventual jackknife,
while others decrease the hitch angle. It is common to base backing up warning and con-
trol systems on some hitch angle limitation, whether derived by physical contact constraints
of the system as shown in Figure 1(a),[2,10] or when the hitch angle is ±90◦ as depicted
in Figure 1(b).[4,11–13] Empirical approaches to determining the hitch angle limitation
have also been demonstrated in [8,14,15], suggesting a hitch angle range less than ±90◦

is necessary, shown in Figure 1(c).
Although empirical approaches to determining a critical hitch angle have been utilised in

practice, a literature search for the critical hitch angle for backing up of trailers shows that
the concept is commonly referred to without indication of how such a threshold can be cal-
culated analytically. In [16], the authors state that a jackknife event is likely if the hitch angle
is greater than 34◦, while the authors in [17] specify a hitch angle limitation of 45◦ to prevent
the possibility of jackknifing. In both cases, the hitch angle limits are significantly lower than
the traditional ‘kinematic’ jackknife criteria of 90◦, though each value is specific to system
geometry, parameters and loading conditions. The authors of [18] suggest the use of a ‘Back-
ing up jackknife detection and warning system’, indicating visually or aurally to the driver
about the system’s proximity to a ‘predetermined maximum critical hitch angle’, though no
explicit solution of the determination methodology for such an angle is provided. While this
result does attempt to answer the question of the threshold on the hitch angle where jack-
knifing begins, empirical approaches do not lend well to variations in parameters such as
trailer loading conditions, as demonstrated in [19], where the controllable set of hitch angles
is set to (−90◦ + ε) ≤ θ ≤ (90◦ − ε]) , where ε > 0 is an angle determined empirically such
that the controllable set is less than ±90◦. With an abundance of control strategies avail-
able for backing up control of trailers,[2,6,7,20–27] it is important that there should exist a
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Vehicle System Dynamics 3

Vehicle steered le�  
 

 Vehicle steered straight  Vehicle steered right  

(a) (b) (c)

Figure 2. Our proposed definition of critical hitch angle takes into consideration the intent of the driver by captur-
ing a desired direction based on the vehicle steering angle. The critical hitch angle has an absolute value (regardless
of vehicle steering, shown in dashed area) and directional value (based on current vehicle steering, shown in green),
and have both an upper and lower limits. As the vehicle steering changes from steered left (a) to centred (b) to
steered right (c), the range of hitch angles bounded by the directional critical hitch angle threshold also shifts from
left to right.

mathematical approach for the determination of the critical hitch angle. Note that the analyt-
ical solution to the critical hitch angle may exceed the hitch angle at which physical contact
occurs, in which case the physical contact criteria supersedes any other condition as the max-
imum allowable hitch angle. For example, consider a vehicle and trailer layout with some
nominal hitch length, trackwidth and wheelbase. If the body of the vehicle and trailer is very
wide, then physical contact between the bodies occurs at a small hitch angle. This contact
occurs at the small hitch angle regardless of kinematic and dynamic properties of the vehicle
and trailer.

A backup controller is presented in [3] which demonstrates that under a backing up turn
manoeuver, the desired hitch angle is ‘stabilised’ with an upper and lower bounded hitch
rate, that is, the steering input of the vehicle is manipulated in a way such that the hitch
angle is indirectly controlled. Any deviation from the desired hitch angle can be controlled
with steering inputs, hence we can view the hitch angle as a controllable state when operating
within the mechanical limitations of the vehicle–trailer. Conversely, when the system exceeds
the critical hitch angle threshold, the controllability of the hitch angle by actuation of the
steering angle is lost. In the case that both vehicle and trailer have independent steering,
when the critical angle threshold is exceeded, there exists no combination of vehicle or trailer
steering inputs such that the hitch angle can decrease when backing up the system. At this
point, the only way to decrease the hitch angle is to drive the vehicle forward.

Being able to reduce the hitch angle at any point during an arbitrary backing up motion is
essential to maintaining control over the trailer. When the ability to decrease hitch angle is
lost for continued backing up motion, the critical hitch angle threshold has been exceeded. In
this paper, we outline the conditions on the vehicle and trailer steering inputs (both steered
and unsteered trailers will be considered for long-wheelbase trailers) and initial hitch angles
which maintain the ability to reduce hitch angle, demonstrating the thresholds beyond which a
reduction of hitch angle is not possible under backing up, shown in Figure 2. In this figure, we
show the potential range of allowable hitch angles for a long-wheelbase trailer with steering
for (a) when the vehicle is steered to the left, (b) when the vehicle steering is straight and
(c) when the vehicle is steered to the right. Note that in each case, the feasible range of
hitch angles in the solid-shaded area is changing as the vehicle steering angle changes, since
the path of the vehicle is being changed. This range is bounded by the Directional critical
hitch angles, which is dependent on the vehicle heading direction. The range of hitch angles
spanned by the stripe-shaded area is invariant of the vehicle steering angle, which is bounded
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4 J. Chiu and A. Goswami

by the Absolute critical hitch angles. Both absolute and directional critical hitch angles are
formally defined in the following section.

We also provide a formal definition of critical hitch angle both for the traditional single-
axle trailer, as well as long-wheelbase dual-axle trailer with a fixed front axle and steerable
rear axle. Unlike other dual-axle trailers where the front axle is a dolly, the fixed front axle in
our study provides some interesting constraints to the motion and requires steering in order to
turn without significant tyre scrub. We consider both steered and unsteered trailers, examining
the critical hitch angle for each case and looking at the controllable set for each case. Note that
for dual-axle steered trailers, we analyse the hitch angle limit of the vehicle–trailer assuming
that the driver controls only the vehicle steering angle, and the trailer steering actuation is
handled by a control system.

The scope of this work is limited to slow speed backing up motion, thus dynamic effects of
the motion are assumed to be negligible. Furthermore, the examples presented assume tyre–
surface models representative of tyres on non-deformable road surfaces. Common examples
where non-deformable road surface may be applicable are semi-trailers reversing into a
docking/loading station or personal trailers backing up in a driveway or parking area. While
we present results for the non-deformable road surface models, we show how such an analysis
could be extended to deformable surface contacts, such as farming, agricultural and off-road
applications of vehicle–trailers.

In Section 2, we present the formal definition of the critical hitch angle for vehicle–trailer
systems, identifying concepts such as absolute and directional criteria for the critical hitch
angle. Section 3 provides a solution for the critical hitch angle for single-axle trailers, with
comparison of our approach to an existing kinematic solution (which assumes no tyre slip).
In Section 4, we extend the solution of critical hitch angle to vehicle–trailer systems with a
long-wheelbase trailer, where the trailer has steering on its rear axle. The main contributions
of this paper are an analytical algorithm for solving the critical hitch angle in the presence of
tyre slip.

2. The ‘critical hitch angle’ θcr

Here we present a formal definition of the ‘critical hitch angle’ (θcr) for slow speed backing
up of trailers, which is valid for both single-axle and dual-axle trailers. First we introduce
the hitch control space [27] which is the 3D Euclidean space spanned by three variables:
the vehicle steering angle δv , the trailer steering angle δt, and the hitch angle θ , as shown
in Figure 3. In the case where the trailer has no steering, the hitch control space lies on
the 2D plane spanning δv and θ . Recall that we cannot directly control θ ; δv and δt are the
only available inputs to indirectly control θ when the trailer has steering capability. For a
trailer without steering, only δv is available to indirectly control θ . This state is referred to as
‘underactuated’ [28] as we cannot directly control θ . Recall also that the ability to reduce θ

is critical to maintaining control over the trailer.
During backing up, some combinations of δv and δt will result in θ̇ > 0, in which case

θ will increase. For other combinations, θ̇ < 0, thus θ will decrease. If we know the sign
of θ̇ for each [δv, δt] combination, then we can determine if the hitch angle magnitude is
decreasing, that is, if |θ | → 0 for the given steering angle pair. In the case that trailer steering
is not available, we want to determine the sign of θ̇ for each δv to determine if |θ | → 0.

We call the critical hitch angle θcr as the hitch angle beyond which there exists no steering
angles δv and/or δt that reduce the hitch angle magnitude. If θcr is exceeded, then the only
way to reduce |θ | would be to stop backing up and to revert to forward driving. For the case of
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Vehicle System Dynamics 5

� Hitch ���v 

�t 

Figure 3. Definition of the three parameters spanning the hitch control space [27]: vehicle steering angle δv, trailer
steering angle δt and hitch angle θ for a vehicle with a long-wheelbase steered trailer. Note that δv is clockwise–
positive, thus in the photo is shown with negative steering angle. The steering angles δv and δt are taken to be the
average angles of the left and right sides for each respective axle.

an unsteered trailer (δt = 0 always), the definition of θcr simplifies to the hitch angle beyond
which there exists no vehicle steering angle δv that reduces the hitch angle magnitude.

When trailer steering is present, the critical hitch angle θcr can be classified into two sub-
categories:

(1) Absolute critical hitch angle (θcr,a): This is the hitch angle threshold beyond which no
possible combination of (δv, δt) can reduce the hitch angle magnitude during backing up.

(2) Directional critical hitch angle (θcr,d ): This is the hitch angle threshold beyond which,
for a given δv , no possible δt can reduce the hitch angle magnitude during backing up.

To explain the concept of absolute and directional critical hitch angles schematically, we
present a series of figures in this section, each with incrementally more information and depth
than the previous. The figures culminate in the overall picture of the critical hitch angle and
its utility in Figure 7, followed by an example with real simulation results in Figure 14. The
figures are created in such a way to walk the reader through the reasoning and derivation
of critical hitch angle step by step. We consider various operating points, that is, the com-
binations of current hitch angles θ and trailer steering angles δt for a given vehicle steering
angle δv in order to determine if backing up in such configurations result in increasing or
decreasing |θ |.

The θcr,a and θcr,d have both upper (denoted by a superscript +) and lower (denoted by
a superscript −) thresholds that define the range of hitch angles where the ability to reduce
|θ | is retained, as previously shown in Figure 2 by the left and right bounds of the hitch
angle ranges. If the threshold is exceeded, it is not possible to reduce the magnitude of the
hitch angle in backing up motion. In Figure 4, we schematically show how the upper and
lower thresholds of θcr,a and θcr,d might vary in the θ − δt space as δv is changed. Starting
with δv = 0◦ in Figure 4(a), we can see the shaded area bounded by θ+

cr,d and θ−
cr,d. As δv

increases to 10◦ (Figure 4(b)) and 30◦ (Figure 4(c)), the shaded area shifts downward. As
the vehicle steering angle changes, the range of initial hitch angles |θ | can be reduced shifts.
However, θcr,a remains constant since it is determined by the upper and lower limits of δv.
Effectively, θcr,a is the value of critical hitch angle at the extremum values of both vehicle and
trailer steering angles. For example, θ+

cr,a occurs at minimum δv and minimum δt (noting that
minimum is the most negative value, not the minimum magnitude of steering angle).
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6 J. Chiu and A. Goswami

(a) (b) (c)

Figure 4. As steering angle increases (from δv = 0◦ in (a), to 10◦ in (b) and 30◦ in (c)), θ−
cr,d and θ+

cr,d shift down-

ward towards negative θ . This is shown by the shift of the shaded area between θ−
cr,d and θ+

cr,d, marked by downward

arrows from the prior steering angle to the subsequent steering angle. The θ−
cr,d at the maximum δv is equal to θ−

cr,a.

Similarly, as δv becomes more negative, θ−
cr,d and θ+

cr,d shift to the top. Also, θ+
cr,d at minimum δv is equal to the upper

θ+
cr,a.

If the initial hitch angle θ0 is larger than θ+
cr,a , there would not exist any steering angle

that can result in decreasing hitch angle magnitude with backing up motion. In this case, it is
necessary to pull the vehicle forward to reduce the hitch angle. Note that since θcr,a is simply
the θcr,d at the maximum and minimum steering limits of the vehicle, we can deduce that

|θcr,d| ≤ |θcr,a|. (1)

Now let us consider specific operating points within the directional critical hitch angle
limits, that is, θ−

cr,d < θ < θ+
cr,d. Figure 5(a) shows some example trajectories of the operat-

ing point in the θ − δt space for various initial operating points. Note that not all operating
points above θ−

cr,d must go towards decreasing |θ | (towards θ = 0). This is because the direc-
tional critical hitch angle simply requires the existence of some feasible δt (within the steering
limitations of the trailer) that reduces the hitch angle magnitude, specifically that at least
one value of δt,min ≤ δt ≤ δt,max that will reduce |θ | exists. Another way to state this is that
θ−

cr,d < θ < θ+
cr,d satisfies the necessary but not the sufficient condition for reduction in hitch

angle magnitude. For example, a vehicle–trailer backing up at operating point B′ does not
result in a reduction of hitch angle magnitude, as the trajectories point away from θ = 0.
However, it is possible to change δt to move the operating points from B′ to B such that
the hitch angle magnitude does reduce with backup motion. Any point below θ−

cr,d in (a) (e.g.
points A, A′, C and D) increases |θ |, eventually resulting in jackknifing. No change of δt (even
instantaneously or while stationary, moving from points A to A′) will result in decreasing |θ |
for δv = 0◦.

When the initial hitch angle θ0 satisfies θ−
cr,a ≤ θ0 ≤ θ−

cr,d, we can do one of two things to
avoid a jackknife: (a) stop backing up and pull forward or (b) increase δv to lower the θcr,d

such that θ−
cr,d < θ0 < θ+

cr,d , as shown in Figure 5(b). Here we show that by increasing δv ,
points A′ and A now both lie above θ−

cr,d , thus there exists some δt such that backing up results
in a reduction of hitch angle magnitude. We now have a formal definition of θcr,a and θcr,d ,
however no method for determining these thresholds and more importantly what specifically
happens between θ−

cr,d and θ+
cr,d. The following section addresses how to find the upper and

lower values of θcr,a, θcr,d and how to determine the direction of the hitch angle under backing
up motion for any operating point in the hitch control space.

Steady state and its relationship with the critical hitch angle θcr

In Figure 5 , we schematically showed a few possible hitch angle trajectories in the θ − δt

space. For some initial hitch angles θ0, a backing up motion results in θ̇ > 0, which increase
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Vehicle System Dynamics 7

(a) (b)

Figure 5. We now consider individual points in the region bounded by the green-shaded region satisfying
θ−

cr,d < θ < θ+
cr,d. There exists at least some combinations of δv and δt such that the hitch angle goes towards zero.

However, this is not a sufficient condition, so not all points in the shaded region between θ−
cr,d < θ < θ+

cr,d result in
θ → 0. For example, point B′ in (a) does not reduce |θ |, however for the same θ with a different δt, shown by point
B, results in θ → 0. As δv increases (depicted by subfigure (b)), both θ+

cr,d and θ−
cr,d move downward, as we already

saw in Figure 4. By doing so, points A and A′ now fall in the area bounded by θ+
cr,d and θ−

cr,d. It is possible to adjust
δt such that |θ | can be decreased, for example, moving from points A′ to A.

θ . For other values of θ0, a backing up motion will result in θ̇ < 0, which decreases θ . It
therefore seems logical that there is a value of θ0 for which θ̇ = 0, and for which θ remains
constant. In fact, this steady-state value of θ , denoted by θss, marks the boundary between the
regions corresponding to θ̇ > 0 and θ̇ < 0.

We make the assumption that for any given δv and δt , there exists a θss corresponding
to θ̇ = 0. If we begin at this steady-state value (i.e. θ0 = θss) and the vehicle–trailer system
is not subject to any external perturbations, θ̇ = 0 and thus θ is constant. Furthermore, we
assume that this θss is a boundary point between θ̇ < 0 and θ̇ > 0, that is, θ̇ is positive or
negative on either side of θ = θss.

By solving the vehicle–trailer dynamic equations for this steady state, we are able to
obtain the boundary between increasing and decreasing hitch angles, shown schematically
for δv = 10◦ in Figure 6. Here, we see a curve of steady-state solutions for various δt , shown
as the blue dash-dot-dot line between θ+

cr,d and θ−
cr,d . The curve is defined by steady-state

operating points that satisfy θ̇ = 0. Any operating point above this curve results in θ̇ > 0 and
conversely any point below the curve corresponds to θ̇ < 0. As δv changes, the steady-state
solution curve also shifts, bounded by θ+

cr,d and θ−
cr,d.

In order to maintain control of the trailer during backing up, we should have at least one
operating point in the θ − δt space that leads to |θ | → 0. If the initial hitch angle θ0 < 0,
then the goal is to ensure that an operating point corresponding to θ̇ > 0 exists. On the other
hand, if θ0 > 0, we need to know the operating points such that θ̇ < 0. Figure 7(a) shows
the possible operating points in the θ − δt space for δv = 0◦ corresponding to a decreasing
|θ |, shown in the yellow stripe-shaded region. If the operating point lies inside this yellow
stripe-shaded area, then continued backing up motion results in a decreasing |θ |. A similar
area is shown for δv = 10◦ in Figure 7(b), where the yellow stripe-shaded area below θ = 0
is larger. If the initial operating point does not lie in this yellow stripe-shaded area and the
goal is to reduce |θ |, then either or both δv and δt need to be adjusted such that the operating
point is moved into the yellow stripe-shaded area.
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8 J. Chiu and A. Goswami

Figure 6. We have identified that some but not all points in the green-shaded area bounded by θ−
cr,d < θ < θ+

cr,d

reduce |θ |, whereas other points increase |θ |. There must exist a boundary value which separates θ̇ > 0 and θ̇ < 0.
Using the steady state θ at each δt (for δv = 10◦, fixed), we know precisely where the operating point does not
change hitch angle (i.e. θ̇ = 0). The curve of the steady-state solutions (shown in blue dash-dot-dot) signifies the
threshold between increasing and decreasing |θ |. For a fixed δv, the controller needs adjust δt such that the operating
point is above or to the right of the blue dash-dot-dot line in order to result in θ̇ > 0.

(a) (b)

Figure 7. Depending on if the initial hitch angle is positive or negative, the areas of the θ − δt space which result
in hitch magnitude reduction are shown in the yellow stripe-shaded area. If the operating point is located outside
of these yellow stripe-shaded areas, then the driver must adjust the vehicle steering angle, or the controller must
adjust δt, such that the operating point moves into this area. For δv = 0◦ and a symmetric vehicle–trailer shown
in subfigure (a), the steady-state solutions curve is symmetric and of opposite sign about the zero hitch angle axis.
Changing vehicle steering angle to δv = 10◦ (shown in subfigure (b)) results in both a vertical and lateral shift of
the steady solutions curve. Furthermore, the shape of the curve is not necessarily the same for a non-zero steering
angle compared to that of δv = 0◦. In subfigure (b), the area of positive hitch angles that can reduce |θ | is reduced,
whereas the area of negative hitch angles that can reduce |θ | is increased. If δv is further increased, the θ+

cr,d can be
less than zero, which means it is no longer possible to back up and reduce |θ | for any initial hitch angle greater than
zero without changing δv first.
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Vehicle System Dynamics 9

Figure 8. Model parameters for a vehicle–trailer system consisting of a single-axle trailer. The vehicle has fron-
t-steered wheels and the trailer is unsteered. The left and right steering angles of the vehicle are denoted by δvL and
δvR, which are determined by Ackermann geometry, with average value δv. The vehicle and trailer are connected via
a revolute hitch joint with its location denoted by H.

The method for finding the critical hitch angle is therefore achieved by solving for the
steady solution θss where θ̇ = 0. We utilise this approach to develop a solver algorithm for
the critical hitch angle in the subsequent sections, beginning with a simpler case of a vehicle
coupled to a single-axle unsteered trailer. Since a kinematic solution exists for the single-axle
trailer case, we use it as a baseline to compare with the results generated using our steady-
state solution approach. Subsequently, we extend the result and solver algorithm to the case
of a vehicle with a long-wheelbase dual-axle trailer, where no existing results are available.
We show that it is possible to calculate the critical hitch angle for vehicle–trailer systems
whilst factoring in effects of tyre slip, which are necessary for the long-wheelbase trailer.

3. Critical hitch angle for a single-axle trailers

3.1. Single-axle trailer model

In order to analytically determine the θcr, we need to define a vehicle–trailer model and then
find the steady-state solution of hitch angle for each δv . The single-axle unsteered trailer is
shown in Figure 8. The description and units of each of the vehicle–trailer parameters shown
in Figure 8 are defined in Table 1.

The equations of motion for this system are given by

mv(U̇v − V vωv) + mt(U̇ t − V tωt) cos θ − mt(V̇ t + U tωt) sin θ =
∑

Fxv +
∑

Fxt cos θ

−
∑

Fyt sin θ , (2)
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10 J. Chiu and A. Goswami

Table 1. Vehicle and single-axle trailer parameter definitions.

Parameter Description Units

av Longitudinal distance from vehicle CoM to front axle m
bv Longitudinal distance from vehicle CoM to rear axle m
cv Longitudinal distance from vehicle rear axle to hitch m
lv Vehicle wheelbase (lv = av + bv) m
dv Longitudinal distance from vehicle CoM to hitch m
ct Longitudinal distance from trailer axle to hitch m
dt Longitudinal distance from trailer CoM to hitch m
mv Vehicle mass kg
mt Trailer mass kg
Iv Vehicle yaw moment of inertia about CoM kg m2

It Trailer yaw moment of inertia about CoM kg m2

δv Vehicle steering angle (front), clockwise-positive ◦
Cα,vf, Cα,vr Vehicle lateral cornering stiffness (front, rear) N/ ◦
Cα,t Trailer lateral cornering stiffness N/ ◦

mv(V̇ v + Uvωv) + mt(U̇ t − V tωt) sin θ + mt(V̇ t + U tωt) cos θ =
∑

Fyv +
∑

Fxt sin θ

+
∑

Fyt cos θ , (3)

Ivω̇v + dv · mv(V̇ v + Uvωv) =
∑

Mv + dv ·
∑

Fyv, (4)

Itω̇t − dt · mv[(U̇v − Vvωv) sin θ − (V̇v + Uvωv) cos θ ] =
∑

Mt − dt

·
(∑

Fxv sin θ −
∑

Fyv cos θ
)

. (5)

It is assumed that the only external contact forces acting on the vehicle and trailer are due
to the tyre–ground interaction forces. In this assumption, we make no choice on the possible
tyre–ground contact models that can be used. The tyre forces and moments resulting from the
these forces about the vehicle and trailer centre of mass (CoM) for the single-axle unsteered
trailer are given by ∑

Fxv = Fxv,fcos δv − Fyv,fsin δv + Fxv,r, (6)∑
Fyv = Fxv,fsin δv + Fyv,fcos δv + Fyv,r, (7)∑
Mv = av(Fxv,fsin δv + Fyv,fcos δv) − bv · Fyv,r, (8)∑
Fxt = Fxt, (9)∑
Fyt = Fyt, (10)∑
Mt = −(ct − dt) · Fyt. (11)

In this paper, we limit the scope of our analysis on single-axle unsteered trailers (note that
the vehicle is still steered), however, the approach is still valid for steered trailers provided
the tyre force models calculate the appropriate lateral forces in the presence of steer angle.

Determination of θcr in the presence of slip requires a vehicle–trailer model that allows
for tyre slip and the resulting tyre forces due to the tyre–ground interaction. In this case, the
steady-state hitch angle where θ̇ = 0 and its property of being the boundary value where hitch
magnitude cannot decrease or increase still holds true. This assumption is used to determine
θcr for the system in the presence of slip.
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Vehicle System Dynamics 11

It is assumed that the vehicle–trailer system are backing up slowly, thus dynamic effects of
the motion are neglected from the model. We first begin with the dynamic equations for the
planar coupled system given in Equations (2)–(5). At steady state, the linear and rotational
accelerations relative to the vehicle are zero, that is U̇v = V̇v = U̇t = V̇t = ω̇v = ω̇t = 0 .
Next, we apply our assumption that θ̇ = 0 resulting in ωv = ωt = ω . Finally, the system at
steady state must have constant velocity and yaw rates, therefore Vv and ω are constant.

With these constraints, we can therefore solve the four nonlinear Equations (2)–(5) for
the four unknowns: Vv , ω, θ and Fv , the vehicle lateral velocity, yaw rate, hitch angle and
tractive force necessary at equilibrium. Manipulation of the equations and eliminating the
zero terms yield the following constraint equations:

0 =
∑

Fxv +
∑

Fxt cos θ −
∑

Fyt sin θ + [(mv + mt)Vv − mtω(dv + d t cos θ)]ω, (12)

0 =
∑

Fyv +
∑

Fxt sin θ +
∑

Fyt cos θ − [(mv + mt)Uv + mtdtω sin θ ]ω, (13)

0 =
∑

Mv + dv

(∑
Fyv − mvUvω

)
, (14)

0 =
∑

Mt − d t

[∑
Fxv sin θ −

∑
Fyv cos θ + mv (Uv cos θ + V v sin θ) ω

]
θ̇ . (15)

However, the nonlinearity of the above constraint equations allows the existence of multi-
ple solutions. To resolve this, we minimise |θ | subject to the constraints. The simple saturation
function of the lateral tyre force model (i.e. lateral force is linear with slip angle and is satu-
rated by Fy ≤ μFz) results in conditions where variations of wheel slip angles yields exactly
the same value for lateral force, causing problems in the numerical minimization solver which
uses a numerical gradient method to determine optimality. To improve the solver efficacy,
we implement a simplified version of the nonlinear Pacejka Magic Formula tyre model,[29]
assuming that the vertical loads are constant and the slip angle is invariant to the vertical
load. More specifically, we assume that the effects of load transfer due to pitch and roll are
negligible as the motion is carried out slowly, however, variation in the loading condition
(such as cargo location on the trailer) will change the vertical load distribution, resulting in a
change in the tyre normal force Fz. Furthermore, changes in the steering input will also result
in a change in the slip angle of the steered wheels. The resulting lateral force is a function of
the road–tyre friction coefficient μ, the normal tyre load Fz, the tyre slip angle α:

Fy = −μFz sin

(
C1 arctan

[
Cα

C1μFz
α − C2

{
Cα

C1μFz
α − arctan

Cα

C1μFz
α

}])
. (16)

Longitudinal forces Fx are modelled as the vehicle longitudinal driving force Fv (required
to overcome the motion resistance due to tyre slip and rolling resistance) and a rolling
resistance opposing the rolling motion direction, given by

Fx = −μrFz + Fv. (17)

Note that in these tyre models, we do not explicitly consider the effects of a deformable
ground (e.g. soil dynamics). However, the Equations (12)–(15) are still valid for as long as
an appropriate tyre–ground contact model, such as Equations (16) and (17) generate Fx and
Fy representative of the tyre–ground interaction at hand.

The steady-state conditions are computed using the constrained minimization problem
as defined above for a constant Uv = −5 kph using Matlab’s ‘fmincon’ function with an
‘active-set’ solver algorithm. The nonlinear constraint equations are only met when all of the
accelerations U̇v, V̇v and ω̇ are zero, with θ̇ = 0. The minimization numerically attempts to
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12 J. Chiu and A. Goswami

solve for the lowest θ such that these conditions are met, however, an initial guess is necessary
for the numerical solver. A selection of initial guess close to the solution improves the success
rate of the numerical solver in obtaining a solution satisfying the nonlinear constraints.

In this minimization problem, the states are x = [Vv, ω, θ , θ̇ , Fv] . We use a set of states sat-
isfying the nonholonomic constraint for each δv as an initial guess for the solver. Derivation
of the states satisfying the nonholonomic constraint, called the no-slip curve (NSC) was intro-
duced in [27]. The NSC resides in the hitch control space, spanning the space of configuration
variables [δv, δt, θ ] for which the nonholonomic constraint is satisfied. For the single-axle
trailer without steering, δt = 0 and the initial guess state is therefore given by

x0 =
[

bvUv tan δv

lv
,

Uv tan δv

lv
, −arctan

cv tan δv

lv
, 0, 0

]

3.2. Existing result: a kinematic solution for critical hitch angle of single-axle trailers

In the previous section we have provided a framework for determining the critical hitch angle
of a single-axle unsteered vehicle–trailer where tyre slip can be non-zero. Making the assump-
tion that the motion of the vehicle and trailer satisfies the nonholonomic constraint, that is, the
wheels are only able to move in their plane, one can obtain an analytical expression for θcr.
In this case, the assumption effectively restricts the vehicle–trailer motion such that lateral
slip of the tyre is zero. In [9] the author states the difference in hitch angle due to a vehicle
displacement �x over one time step is given by

θ(t + 1) = θ(t) + 2arcsin

[
�x sin [θ(t) − arctan(cv/rv)]

2ct

]
+ �x

rH
(18)

where θ(t) is the current hitch angle, rv is the radius of rotation of the vehicle, rH is the radius
of rotation of the hitch point and θ(t + 1) is the hitch angle after distance �x of the vehicle,
shown in Figure 9.
Assuming the vehicle motion is nonholonomic, the vehicle radius of rotation is given by
rv = lv/tan δv, where lv is the vehicle wheelbase and the kinematic relation between the radius
of curvature of the vehicle hitch point rH and the steering angle δv is given by

rH = sgn(δv)

√(
lv

tan δv

)2

+ cv
2 (19)

From Equation (18) and the radii rv and rH as a function of the steering angle δv , we can
obtain the change of hitch angle at each time step �θ = θ(n + 1) − θ(n) as

�θ = 2 arcsin

[
�x sin [θ − arctan(cv tan δv/lv)]

2ct

]
+ �x

sgn(δv)
√

(lv/tan δv)2 + c2
v

(20)

Now that we have the equation for the change in hitch angle, the objective is to solve for
the steady-state hitch angle θss in order to determine value for which |θ | remains constant.
The steady-state condition for hitch angle is given by �θ = 0, therefore from Equations (18)
and (19) we obtain

θss = −arcsin

[
2ct

�x
sin

(
�x

2rH

)]
+ arctan

cv

rv
(21)

As stated in Section 2, the steady-state condition yields the boundary between increas-
ing and decreasing hitch angles. This boundary condition therefore determines the minimum
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Vehicle System Dynamics 13

Figure 9. If it is assumed that the vehicle–trailer motion is nonholonomic, the vehicle rotates about some instan-
taneous centre of rotation (ICoR) with radius rv. The radius of the hitch about this ICoR is rH, where it is assumed
the hitch is rigidly attached to the vehicle. The trailer rotates about hitch point H, with hitch angle θ relative to the
vehicle. As the vehicle backs up over one time step, it moves with displacement �x, shown in the inset. The small
angle approximation results in the radius to the ICoR remain unchanged with value rv.

hitch angle for each δv such that the hitch magnitude no longer decreases. The extremum
values of this solution at maximum and minimum δv are therefore the θcr of the system. Since
the trailer is unsteered, δt is constrained to a fixed value. Therefore, beyond θcr there does not
exist any possible combination of vehicle and trailer steering angles (noting that δt is fixed)
that can reduce the hitch angle magnitude during backing up, so therefore this is the absolute
critical hitch angle θcr,a:

θcr,a = − arcsin

[
2ct

�x
sin

(
�x

2sgn(δv)
√

(lv/tan (±δv,max))2 + c2
v

)]
+ arctan

cv tan (±δv,max)

lv
(22)

The relationship between θ̇ , δv and θ can also be found in [30] using similar assumptions of
no-slip motion. In this work, they show that with a feedback control on the steering angle,
the closed-loop response of the hitch rate can be near linear, thus lending well to analysis of
stability of the closed-loop system using classical linear control methods. This approach to
finding θcr,a lends well to vehicle–trailer configurations that have kinematic or near-kinematic
motion, however in a more general case (such as long-wheelbase dual-axle trailers) there
may be non-trivial tyre slip that needs to be factored into the solution. In Section 3.3 we will
compare the critical hitch angle for a single-axle trailer making the no-slip assumption with
the result where tyre slip is present.

D
ow

nl
oa

de
d 

by
 [

21
6.

98
.1

22
.2

] 
at

 0
9:

09
 1

6 
M

ay
 2

01
4 



14 J. Chiu and A. Goswami

Table 2. Parameters for the vehicle with a single-axle trailer.

Parameter Value (units) Parameter Value (units)

mv 2000 kg av 1.2 m
bv 1.6 m cv 1.3 m
mt 1800 kg dt 2.5 m
ct 3.5 m Cα,vf 1250 N/◦
Cα,vr 1500 N/◦ Cα,tr 1000 N/◦
C1 1.2 C2 –2.0

Note: The vehicle is front-steered and can steer to ±30◦ whereas the
trailer is unsteered.

Figure 10. θss for unsteered single-axle trailer at Uv = −5 kph, solved using both a kinematic analysis model and
steady-state analytical approach (which makes no assumptions on the tyre slip). The kinematic solution based on
no-slip kinematics results in a virtually the same steady-state hitch angle magnitude than when tyre slip is present
and allowed. This suggests that the slow backing up motion of a single-axle trailer experiences very little tyre slip.
θ+

cr,a and θ−
cr,a are the values of the steady-state solution at vehicle steering angle extrema.

3.3. Critical hitch angle for single-axle trailers

In this section, we assume that the hitch does not transmit any vertical loads between vehi-
cle and trailer (also known as tongue weight) for simplification of the vehicle–trailer tyre
forces. Note that as the distance from the CoM to the single-axle axis increases, the tongue
weight increases accordingly. The rule of thumb for tongue weight is 10–15% of the trailer
weight.[31] It may be necessary to model the tongue weight effect on tyre forces under con-
ditions when the tongue weight is significantly larger due to improper loading of the trailer.
Solving for the steady state using the tyre forces approach outlined in Section 3 for the single-
axle trailer results in a slightly larger magnitude θss than using the purely kinematic approach
presented in Section 3.2. The results shown are for the vehicle–trailer parameters given in
Table 2.

In Figure 10 , we superpose the solution for θss using our analytic solver approach over the
kinematic solution and demonstrate that there is very little difference in both methods for a
single-axle trailer. The trivial steady-state solution at δv = 0◦ is equal for both kinematic and
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Vehicle System Dynamics 15

numerically solved solutions since at zero steering and hitch angle, the vehicle and trailer is
in a straight backward motion and thus the wheels only move in their planes. The remarkable
similarity between the result using both methods demonstrates that the motion of a single-
axle trailer is nearly kinematic, that is, for this type of trailer there is very little slip in the
tyres when backing up is performed slowly. Furthermore, it demonstrates that our approach
is viable in solving for the critical hitch angle. In situations where tyre slip is small, our
proposed approach is equivalent to the kinematic analysis, which assumes from the onset
that tyre slip is zero.

The solutions are very similar, but not exact. The small discrepancy between these results
is due to the no-slip constraint for a purely kinematic analysis (e.g. NSC and Equation (21))
preventing lateral sliding of the tyre. However, solving for the steady state using forces and
moments, we know that in order to generate any tyre forces there is a necessity of tyre slip.
The θss including necessary slip is therefore larger than if zero-slip is assumed, and the dis-
parity between the results increases with larger velocities. With this result, we now generalise
to the dual-axle trailer case, where tyre slip is not only present, but we also show why tyre
slip is necessary for any non-trivial cases.

4. Critical hitch angle for dual-axle long-wheelbase trailers

4.1. Dual-axle trailer model

In Section 3 , we demonstrated the existing result for single-axle trailers assuming non-
holonomic motion. However, when we consider dual-axle long-wheelbase trailers, there
does not exist any possible solutions except the trivial one (i.e. straight forward and
backward with zero steering angles) and the NSC,[27] under which the nonholonomic
assumption is satisfied. In order to determine a critical hitch angle, we must take into
consideration the lateral tyre slip. In Figure 11, we show the geometric and configuration
parameters of a vehicle coupled to a long-wheelbase trailer with steering. The descrip-
tion and units of each of the vehicle–trailer parameters shown in Figure 11 are defined in
Table 3.

The equations of motion for the vehicle–trailer system where the trailer has a long-
wheelbase are given by

mv(U̇v − V vωv) + mt(U̇ t − V tωt) cos θ − mt(V̇ t + U tωt) sin θ =
∑

Fxv +
∑

Fxt cos θ

−
∑

Fyt sin θ , (23)

mv(V̇ v + Uvωv) + mt(U̇ t − V tωt) sin θ + mt(V̇ t + U tωt) cos θ =
∑

Fyv +
∑

Fxt sin θ

+
∑

Fyt cos θ , (24)

Ivω̇v + dv · mv(V̇ v + Uvωv) =
∑

Mv + dv ·
∑

Fyv, (25)

Itω̇t − dt · mv[(U̇v − Vvωv) sin θ − (V̇v + Uvωv) cos θ ] =
∑

Mt − dt ·
(∑

Fxv sin θ

−
∑

Fyv cos θ
)

, (26)

where Uv, Vv are the longitudinal and lateral velocities of the vehicle, with vehicle yaw rate
ωv . The longitudinal and lateral velocities of the trailer are denoted by Ut, Vt, with trailer yaw
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16 J. Chiu and A. Goswami

Figure 11. Dimensions for vehicle and dual-axle long-wheelbase trailer system. The vehicle has front-steered
wheels and the trailer has rear-steered wheels. The vehicle has left and right steering angles δvL and δvR, determined
by Ackermann geometry, with average value δv. The trailer has left and right steering angles δtL and δtR, determined
by Ackermann geometry, with average value δt. The vehicle and trailer are connected via revolute hitch joint H.

Table 3. Vehicle and long-wheelbase trailer parameter definitions.

Parameter Description Units

av Longitudinal distance from vehicle CoM to front axle m
bv Longitudinal distance from vehicle CoM to rear axle m
cv Longitudinal distance from vehicle rear axle to hitch m
lv Vehicle wheelbase (lv = av + bv) m
dv Longitudinal distance from vehicle CoM to hitch m
at Longitudinal distance from trailer CoM to front axle m
bt Longitudinal distance from trailer CoM to rear axle m
ct Longitudinal distance from trailer front axle to hitch m
lt Trailer wheelbase (lt = at + bt) m
dt Longitudinal distance from trailer CoM to hitch m
mv Vehicle mass kg
mt Trailer mass kg
Iv Vehicle yaw moment of inertia about CoM kg m2

It Trailer yaw moment of inertia about CoM kg m2

δv Vehicle steering angle (front), clockwise-positive ◦
δt Trailer steering angle (rear), clockwise-positive ◦
Cα,vf, Cα,vr Vehicle lateral cornering stiffness (front, rear) N/ ◦
Cα,tf, Cα,tr Trailer lateral cornering stiffness (front, rear) N/ ◦

rate ωt . For both the vehicle and trailer, we use the simplified ‘bicycle model’, and the tyre
force terms and the corresponding moments about the vehicle and trailer CGs are given by

∑
Fxv = Fxv,fcos δv − Fyv,fsin δv + Fxv,r, (27)∑
Fyv = Fxv,fsin δv + Fyv,fcos δv + Fyv,r, (28)∑
Mv = av(Fxv,fsin δv + Fyv,fcos δv) − bv · Fyv,r, (29)
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Vehicle System Dynamics 17

Table 4. Parameters for the vehicle with a
long-wheelbase dual-axle trailer.

Parameter Value (units) Parameter Value (units)
mv 2000 kg av 1.2 m
bv 1.6 m cv 1.3 m
mt 1800 kg at 1.0 m
bt 1.0 m ct 1.5 m
Cα,vf 1250 N/ ◦ Cα,vr 1500 N/ ◦
Cα,tf 1000 N/ ◦ Cα,tr 1000 N/ ◦
C1 1.2 C2 −2.0

Note: The vehicle is front-steered and can steer to ±30◦.

∑
Fxt = Fxt,f + Fxt,rcos δt − Fyt,rsin δt, (30)∑
Fyt = Fyt,f + Fyt,rcos δt + Fxt,rsin δt, (31)∑
Mt = at · Fyt,f − bt(Fyt,rcos δt + Fxt,rsin δt). (32)

As with the case of the single-axle trailer, we use a nonlinear tyre model representative of
a tyre–ground interaction on a solid surface to determine the force terms. The force of the
tyre in its lateral and longitudinal directions are calculated by Equations (16) and (17).

4.2. Critical hitch angle for unsteered dual-axle trailers

The dual-axle long-wheelbase trailer is assumed to have a hitch that has zero tongue weight
(i.e. a drawbar hitch). As previously stated, the only solution satisfying a kinematic (i.e. no-
slip) constraint is the trivial solution of δv = 0◦ and θss = 0◦ and the unique solutions on
the NSC. It is necessary to solve for the critical hitch angle using the tyre force numeri-
cal approach similar to Equations (12)–(15) used for the single-axle trailer in Section 3.1.
Once again, the approach is to minimise |θ | subject to the constraint Equations (12)–(15). As
before, we utilise the same tyre–ground contact model presented in Equations (16) and (17).

The vehicle–trailer parameters that were used for this analysis are given in Table 4, assum-
ing a fully loaded trailer with steering on the rear axle wheels. Note the long-wheelbase of the
dual-axle trailer (2.0 m), which makes the behaviour of such a system significantly different
from that of a single-axle trailer.

Using Matlab’s ‘fmincon’ function with an ‘active-set’ solver algorithm, we can com-
pute the steady-state hitch angle θss for any δv with Uv = −5 kph. The initial guess for the
numerical solver is based on the nonholonomic constraint assuming a trailer without steer-
ing, given in Equation (18). In Figure 12 , we show the steady-state solutions of hitch angle
for the unsteered dual-axle long-wheelbase trailer, comparing them to the kinematic solution
assuming a single axle, where the effect of having a front axle is ignored completely.

In this case, we see that the kinematic solution and the steady-state solution do not match
nearly as well once the front axle is introduced into the problem when compared to the simi-
larity of both approaches when analysing the single-axle trailer in Section 3.3. The necessity
for tyre slip in the dual-axle trailer under turning results in inaccuracies when using the kine-
matic assumption that the motion is nonholonomic. Not only is the absolute critical hitch
angle higher with the non-analytical approach, but the slope of the solutions around δv = 0
is also significantly different. As the vehicle steering angle magnitude increases, the correla-
tion between the kinematic solution (assuming no slip motion) and the steady-state solution
begins to increase. If we assume that the front tyres are allowed to move freely in both lon-
gitudinal and lateral directions (i.e. holonomically), then the system becomes kinematically

D
ow

nl
oa

de
d 

by
 [

21
6.

98
.1

22
.2

] 
at

 0
9:

09
 1

6 
M

ay
 2

01
4 



18 J. Chiu and A. Goswami

Figure 12. Solved set of steady-state hitch angles during backing up of a vehicle–trailer system with Uv = −5 kph
and no trailer steering. The kinematic solution shown uses the existing result from Section 3.2, effectively ignoring
the front axle of the trailer.

similar to a single-axle trailer because the front axle only supports vertical loads. This sug-
gests that at high steering angles for this parameter set, the tyres of the front axle of the trailer
experiences significant lateral slip and the lateral forces are likely saturated.

4.3. Critical hitch angle for steered dual-axle trailers

Our main interest is the case where the driver and only the driver controls δv , and a control
system actuates δt . We can characterise θcr,d by the minimum and maximum θss for all ranges
of feasible trailer steering angles for a given commanded vehicle steering angle δv. In other
words, for a specified δv:

θ+
cr,d = max θss|δv ∀ δt,min ≤ δt ≤ δt,max, (33)

θ−
cr,d = min θss|δv ∀ δt,min ≤ δt ≤ δt,max. (34)

Similarly, we can also determine the θcr,a by looking at the directional critical hitch angle
at the extrema vehicle steering angles. In other words:

θ+
cr,a = max θss

{ ∀ δt,min ≤ δt ≤ δt,max,
∀ δv,min ≤ δv ≤ δv,max,

(35)

θ−
cr,a = min θss

{ ∀ δt,min ≤ δt ≤ δt,max,
∀ δv,min ≤ δv ≤ δv,max.

(36)

By calculating the critical hitch angle for such a system, we are able to determine where the
system must stop backing up and pull forward in order to prevent jackknifing. Furthermore,
such information can also be used by the driver to quantitatively gauge how close the current
operating condition is from the critical hitch angle. Using Matlab’s ‘fmincon’ function with
an ‘active-set’ solver algorithm, we can compute the steady-state hitch angle θss for any δv and
δt with Uv = −5 kph. We use a set of states satisfying the nonholonomic constraint for each
δv as an initial guess for the solver. The initial guess state for the dual-axle long-wheelbase
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Vehicle System Dynamics 19

Figure 13. Solved set of steady-state hitch angles (shown as dots) during backing up of a vehicle–trailer system
with Uv = −5 kph. A linear interpolation fitted surface matching the steady-state solution points is shown super-
posed, with the colours of the mesh representing the values of the steady-state hitch angles from blue being smallest
to red being largest.

steered trailer used is the NSC,[27] given by

x0 =
[

bvUv tan δv

lv
,

Uv tan δv

lv
, arctan

ct tan δt

lt
− arctan

cv tan δv

lv
, 0, 0

]
(37)

In Figure 13, we show the steady-state hitch angle for −30◦ ≤ δv ≤ 30◦ and −20◦ ≤ δt ≤
20◦ by point markers in the hitch control space. The points are used to generate a best-fit
mesh surface as shown superposed. The ‘fmincon’ numerical solver is unable to solve
the constrained minimization problem if the initial guess state is too far from the steady-state
solution. Due to the choice of initial condition for the numerical solver given in Equation (37),
which is the states of the vehicle–trailer satisfying nonholonomy, we get a significantly higher
success rate of solving the optimization problem along the region around the NSC.

We schematically demonstrated the curve of steady-state solutions in Figure 7(a) and 7(b)
and how such information could be utilised for a backing up control strategy. We are now able
to extract a steady-state solution curve by taking the intersection between the steady solution
surface and the θ − δt plane at each δv , as shown in Figure 14. In this example, we show the
extraction of the steady-state solution curves for the δv = 0◦ and δv = 10◦ planes.

The iso-θ contours of the surface also provides some useful information regarding the
possible combinations of δv and δt such that the hitch angle magnitude does not increase.
Figure 15 shows the contour map of the surface shown in Figure 13, the conditions for a
steady-state hitch angle. Effectively, any combination of steering inputs to the left of the iso-
θ contour decreases hitch angle and any combination to the right increases it for that given
initial hitch angle. For example, for a hitch angle of θ = 10◦, any combination of δv and δt to
the left of the corresponding iso-θ contour should reduce hitch angle magnitude.

Based on a trailer steering range of −20◦ ≤ δt ≤ 20◦ , we show the upper and lower limits
for θcr,d as defined by Equations (33) and (34) in Figure 16. In the δv = ±10◦ range, θcr,d is
nearly linear, however it is important to note that the solution assuming no slip does exceed
the area bounded by θ+

cr,d and θ−
cr,d at large values of δv . This means as the driver gets towards

the maximum and minimum steering limits of the vehicle, the ability to maintain directional
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20 J. Chiu and A. Goswami

Figure 14. The steady-state solution curves are the intersections of the steady solution surface at constant δv planes
in the hitch control space, shown for δv = 0◦ and δv = 10◦ planes, which were originally presented schematically in
Figure 7(a) and 7(b).

Figure 15. Iso-θ contour map for steady-state condition at Uv = −5 kph shows the (δv, δt) combinations for each
steady-state hitch angle. For each hitch angle θ , the operating points of (δv, δt) to the left of the iso-θ contour result
in θ̇ < 0, whereas the operating points to the right of the iso-θ contour result in θ̇ > 0.

D
ow

nl
oa

de
d 

by
 [

21
6.

98
.1

22
.2

] 
at

 0
9:

09
 1

6 
M

ay
 2

01
4 



Vehicle System Dynamics 21

Figure 16. Calculated θ+
cr,d and θ−

cr,d for each value of δv at Uv = −5 kph, where the trailer steering angle is limited
to −20◦ ≤ δt ≤ 20◦. For each δv, we can see the directional critical hitch angles, beyond which it is not possible for
the trailer steering controller to recover and prevent jackknifing. The values of θ+

cr,a and θ−
cr,a are the maximum and

minimum of θcr,d.

stability diminishes. The calculations also show that with a δt = ±20◦ limit, the system is not
able to back up in a stable manner when δv is at the maximum/minimum values of ±30◦.

The values for θcr,a is extracted from the data of θ+
cr,d and θ−

cr,d at the extreme vehicle steering
angles, therefore, we have an θcr,a = 75◦ for the given vehicle–trailer parameter set in Table 4.
This result indicates that for these system parameters and actuation constraints, if the hitch
angle θ exceeds 75◦, then the only way possible to reduce hitch angle is to stop backing up
and pull the vehicle forward. Given this information, the driver should not attempt to continue
backing up when the hitch angle exceeds the θcr,a.

In this section, we have demonstrated the directional and absolute critical hitch angle for a
vehicle with a long-wheelbase trailer backing up at 5 kph. The quasi-static analysis neglects
dynamic effects, and does not account for when the trailer motion is swinging towards the
critical hitch angle with large rotational momentum. However, if we utilise the same approach
to solve for the critical hitch angle at other speeds, we see that the θ+

cr,a does not change
noticeably with a range of reasonable backing up speeds, given in Table 5. The variances in
θ+

cr,a between the different speeds ranging from −1 to −9 kph are within the tolerances of the
numerical solver accuracy. Note that since the parameters are laterally symmetric, θ+

cr,a and
θ−

cr,a equal in magnitude and opposite sign.
To validate the absolute and directional critical hitch angles, we use a dynamic simulation

of a vehicle–trailer system with fixed steering angles and varying initial hitch angles. The
dynamic simulation model consists of an eighth-order differential equation of the vehicle–
trailer planar dynamics, utilizing the Magic Formula tyre model for each tyre–ground contact.
We compare initial values of hitch angle above and below the solved critical hitch angle to
demonstrate the difference in hitch behaviour about this unique angle. First, we show in
Figure 17 that the absolute critical hitch angle correlates well with the simulation model. In
this case, the vehicle steering is set to the maximum value of δv = −30◦ , with trailer steering
angle at a maximum of δt = −20◦ in order to attempt to restore the hitch angle from an initial
value back to zero. Any θ0 > 76◦ results in hitch angles that grow towards jackknife, and any
θ0 < 76◦ results in a decreasing hitch angle. Note that the boundary value (i.e. the absolute
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22 J. Chiu and A. Goswami

Table 5. The θcr,a decreases with
increased backing up speed.

Speed (kph) θ+
cr,a (◦)

−1 75.5
−3 75.5
−5 75.4
−7 75.5
−9 75.4

Note: This results in a lower possible
operating range of hitch angles, and
thus manoeuvrability of the trailer, with
increased speed.

Figure 17. Simulation of the vehicle–trailer system with δv = −30◦ and δt = −20◦ at varying initial hitch angles
to demonstrate the θ+

cr,a. Values below the absolute critical hitch angle eventually return back to zero hitch angle, but
values exceeding the critical hitch angle result in an eventual jackknife.

critical hitch angle) is slightly larger than the θ+
cr,a = 75.5◦ as given by the numerical solver, as

some small dynamic effects may be present in the simulation. In this figure, we demonstrate
the direction of hitch angle for initial values θ0 of 70◦, 75◦, 76◦, 77◦, 78◦ and 80◦. The initial
decrease in hitch angle from each θ0, even values exceeding θ+

cr,a , is a dynamic effect caused
by the initiation of the vehicle pushing on the trailer as the simulation states are initialised
assuming the tyre and hitch forces on the system are zero.

5. Conclusions

We provided the formal definition of the ‘critical hitch angle’ (θcr) for backing up of vehicle–
trailers. The critical hitch angle is the hitch angle beyond which there exists no input steering
angles δv (for the vehicle) and δt (for the trailer) that reduces the hitch angle magnitude.
For trailers with steering capability, θcr can be divided into two sub-categories: directional
and absolute. We have demonstrated a systematic approach to solving for the value of θcr by
presenting a set of constraints to the dynamic equations when the system is at steady state
(whether stable or unstable). The θcr can be extracted from the set of steady-state solution
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Vehicle System Dynamics 23

points to determine feasible ranges of operation for a trailer under backing up motion. We
show through numerical simulation of the vehicle–trailer system that the critical hitch angle
of the system does correspond to the solved value using the proposed algorithm.

Applications for use of the θcr may include advanced backing up warning systems that
instruct the driver as the θcr approaches and evaluation of jackknife prevention controller
performance. Such an analysis can also be utilised in the specification of trailer steering angle
limits necessary on long-wheelbase trailers. In systems that allow for full driver control of
vehicle steering but attempt to stabilise the system using trailer steering, such as [27], it is
useful for the operator to understand the limits of the stabilisation system so as to allow for
continuous backing up without resulting in jackknifing. In extreme cases, the θcr could be
used to prevent jackknifing of such a system by the limitation of the vehicle steering angle
until the risk of jackknifing is removed.

Our approach for solving θcr relies on the assumption that the backing up manoeuver hap-
pens at low velocity, such that the dynamic effects of the motion are neglected. It may be
useful in future work to include the dynamics and look at not only the θcr as a function of
the hitch control space, but also the derivative of those states. Since a constant hitch angle
under backing up is only achieved in constant turns, it may be necessary to consider the effect
of θcr when the hitch angle is continuously changing. Furthermore, the applicability of such
system will depend on robustness due to parametric and measurement uncertainty, therefore
additional work is required to fully understand the effect of these changes on the θcr.
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