On the control of mechanical systems with dynamic

backlash

M. T. Mata-Jiménez; B. Brogliato
Laboratoire d’Automatique de Grenoble
UMR CNRS-INPG 5528
Domaine Universitaire, B.P. 46, 38402 St. Martin D’Heres, France
mata, brogli@lag.ensieg.inpg.fr

A. Goswami
INRIA Rhéne-Alpes
ZIRST, 655 Avenue de ’Europe, 38330 Montbonnot St. Martin, France

ambarish.goswami@inrialpes.fr

Abstract

The focus of this work is the analysis and control of
a simple rigid body mechanical system with dynamic
backlash. Contrary to most of the existing work in the
control literature we explicitly treat all the dynamic and
non-linear characteristics of this system. A desired sym-
metric periodic orbit locally stable is generated by a PD
control scheme. In order to enlarge the basin of attrac-
tion of this orbit we propose the use of a hybrid control
in addition to the PD control. This work finds poten-
tial application in several areas including the control of
kinematic chains with joint clearance and vibro-impact
systems.

1 Introduction

Backlash is one of the most important non-linearities
that taxes the control strategies implemented in the in-
dustrial machines and degrades the overall performance
of the machines. It causes delays, oscillations, and conse-
quently gives rise to inaccuracies in the position and ve-
locity of the machine. In extreme cases, backlash related
effects can help set in an extremally complicated system
behavior thereby making it completely intractable from
the point of view of the controller.

Backlash commonly occurs in bearings, gears and im-
pact dampers. It arises from unavoidable manufactur-
ing tolerances or are often deliberately incorporated in
the system to accommodate thermal expansion [2]. Fig
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1 presents the sketch of a simple system with backlash
which uses a rigid body contact/impact model.

Figure 1: System with backlash

The control of system with backlash has been inves-
tigated by several authors and there exists different ap-
proaches. [10] analyzed the problem and proposed to
model backlash as a hysteresis function between the out-
put and input positions of the system. This is a geomet-
ric model in which the system input 1s #; and the output
18 5. Given that the dynamic effects of the collisions are
not taken into account in this model, it cannot describe
the real dynamics of the system in Fig. 1. This backlash
model does not approximate the real physical system in
Fig. 1 as it makes the un-physical assumptions that the
shocks are purely inelastic and that the ratio of the in-
ertias of the two interacting masses, %, is zero. They
propose an algorithm for the compensation of the back-
lash dynamic that use an adaptive control strategy with
a high gain.

Other approach is used by [8] which formulated the dy-



namic equations of motion for an impact pair including
compliance at the contact. In his model, 7 is the input
and s the output. It is assumed that I; = 0, 1.e. the
system is an inertia free elastic shaft system with back-
lash. Contrarily to [10] their linear control input uses a
low gain when the system evolves inside the clearance.

In [1] the authors investigate the control of a system
with dynamic backlash considering the collisions. With
respect to Fig. 1 their control model considers the torque
71 as the input and the position 85 as the output. In their
control model, the effect of impact of the gears on the
dynamics of the first gear (in Fig. 1) is considered as a
disturbance. In order to explore the limit cycle behavior
of the system they base their study on the describing
function techniques.

Several other backlash models have been proposed and
studied in the mechanical engineering literature and,
in particular, in relationship with the so-called impact
damper. [2, 9] studied the dynamic response of simpli-
fied rigid-body impacting systems. They showed the ex-
istence of complex dynamics including different types of
periodic trajectories, bifurcations, and chaotic motion.

Tn this work the impact damper (see Fig. 2) is used
as a simplified model of backlash for feedback control
purposes incorporating the dynamical effects of impacts.
We use a rigid body model which is justified by typi-
cal numerical values of 10!°N/m for the contact/impact
stiffness that has been reported in the literature [5, 4].

We wish to underline here that in contrast to the mod-
els of [10] and [8] we consider the torque 7 as the input
and the angular position 65 as the output. In the linear
backlash model as shown in the Fig. 2 this corresponds
to U and 21, respectively. In our opinion this is the most
practical model for control purposes in a machine with
clearance. Our study finds potential application in the
control of robot manipulators whose performance may
be degraded because of the presence of clearance in the
joints [5].

In this work we apply PD control strategy to this sys-
tem and identify the realizable stable symmetric periodic
solutions. This linear control law is active only around
a periodic solution. In order to arrive at this solution
from given initial conditions (which often we have no
control upon) we apply a different control scheme. The
underlying philosophy of this strategy is similar to the
one proposed in [6] where the second control law is used
to guide the trajectories to the basin of attraction of the
linear control. We use a control consisting of a constant
input and appropriately timed impulses. We show that
with a minimum number of two impulsive inputs the pri-
mary mass can be brought from any initial condition to a
stable periodic symmetric orbit, which is then preserved

with the PD control law.

2 Controlled
model

impact-damper

A schematic diagram of the mechanical system under
consideration is shown in Fig. 2, which consists of a
secondary mass ms subject to an external control input
U and a primary mass, m1, which is constrained to move
in a slot inside the mass mso. The supposed frictionless
motion of m; is instigated by collisions with my which
occur intermittently because of the clearance 2L. The
play comes from the size of the slot in ms being larger
than the size of my. Due to the absence of friction, the
velocity of my remains constant between two consecutive
impacts. The physical contacts may repeat many times,
leading to a finite or infinite number of collisions.

This idealized model is called an tmpact pair. 1t is
a simplified version of many typical mechanical systems
with clearances. Because of its simplicity, it has been
used frequently as a basic model for the study of me-
chanical systems with clearances [2, 9, 4] and references
therein. Although it is an approximate model, it exhibits
the typical behavior found in such systems and has an
extremely rich dynamics.
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Figure 2: Physical model

The equations governing the motion between two suc-
cessive impacts are:

mli‘l =0

Minig = U for |[x1 — za| < L

(1)

Notice that this is an under-actuated system in the
sense that there is only one control input and two de-
grees of freedom. Also this system belongs to the class
of systems called hybrid dynamical systems. The motion
of the system at the instant of impact must satisfy the
linear momentum conservation equation,



my (21 (65) — 21 (1) + ma(@a(tf) — 22(t7) =0 (2)

where t,;" and ?;; denote the velocities just after and just
before the k' impact. All impacts are supposed, rea-
sonably for metals, to be instantaneous and described
by a coefficient of restitution, e, representing the energy
lost during collision [3]. From the definition of the coef-
ficient of restitution, which gives the ratio of the relative
velocity after and before the impact, one has

(1) — i) = —e(@r(ty) — da(ty))  (3)
From the equations (2) and (3) and considering that

the positions of the masses are not changed during the
impact, the following relations can be obtained,

T (ty) Lo 0 0 1(ty)
) | [0 0 0 )
5:61(%_{) 00 ;fTu T+u &1(ty )
o (17 0 0 %reum :_’Le zo(ty)
(4)
where p = % is called the mass ratio.

Let us consider the case where L = 0, i.e. the clear-
ance is zero and x1 = x5 (there are no impacts). Then
this second order system is easily controlled via a PD
controller of the form

U = makag — kyZa — kpZa,

ky>0,ky >0 (5)

with o = 29 — xa4 and xo4 1s a desired trajectory. This
control 1s applied only on ms.
In the following we shall choose 294 as a cosine func-

tion,
(6)

so that the closed-loop behavior of the controlled system
between impacts is given by,

Toq = Xy cOSwi

mli‘l = 0
(7)

Maly =

_kviZ - kpr + IBCOS ((")t + C)

For the system with L # 0, this control is effective
only between impacts. Since the impacts are considered
instantaneous, this control has no effect during the im-
pacts. However the impacts influence the evolution of
ms and mq. It is important to observe that the motion
of mq can only be indirectly controlled via impacts.

We build the periodic trajectories with this control
law based in the observation that the equations are lin-
ear between collisions; thus explicit solutions can be ob-
tained. These solutions are concatenated at the instant

of the impact with an impact rule to obtain a complete
solution. With this design philosophy we find the nec-
essary conditions for obtaining periodic symmetric or-
bits with two collisions per period (this is the simplest
solution possible). We show that is possible select the
appropriates values of the gains so that the control law
creates a desired stable trajectory. These trajectories
correspond to fixed points of the Poincaré map. The
stability analysis is done computing the Jacobian matrix
of the Poincaré map at the periodic orbits and finding
the eigenvalues. Those periodic trajectories are locally
stable with an a priori unknown basin of attraction. The
details of calculations are in [7]. Tt is necessary to design
a complementary control strategy to enlarge the basin
of attraction of the whole scheme. This 1s the subject of
the next section.

3 Hybrid control

This section is devoted to the study of a control strategy
which allows us to bring the trajectories into the basin
of attraction of a desired periodic motion pg(t). Tt is
noticeable, that due to the non smooth behavior of the
system, p4(t) cannot be chosen as z94(t). In fact the goal
is to stabilize the system around a p4(t) which is as close
as possible (in terms of magnitude and period) to a sinu-
soidal desired motion. Let us recall that the closed-loop
system with fixed gains k,, k, yields at best a locally
stable periodic trajectory which in general coexists with
more complex dynamics. It is therefore an important
matter to seek for a hybrid control strategy which elimi-
nates this sort of behavior, and at the same time enlarges
the basin of attraction of the desired motion as much as
possible to counteract possible disturbances.

It 1s important to remark that there exists a basin of
attraction around the fixed point of P corresponding to
pa(t) since this corresponds to a hyperbolic fixed point
of P. Tt is supposed that this region is not too small to
be of practical interest.

The proposed control algorithm consists of 3 steps
which can be enumerated,

1. Tdentify a periodic orbit (which is a fixed point for
the impact Poincaré map of the closed-loop system
with PD control), which is desirable in terms of
system performance.

2. Direct the trajectory from an initial condition to a
neighborhood around the desired fixed point repre-
senting a periodic orbit.

3. Switch to the kp, k, and w values which locally sta-
bilize the desired periodic orbit.



It is assumed that the switching i1s instantaneous and
that the gains k,, k, and the frequency w can be varied
arbitrarily.

3.1 Constant-impulsive control

The approach to targeting the desired fixed point
(z7, 95, y5) consists in applying a constant control input
at the impact time, and an impulsive input between two
consecutive collisions to modify the velocity of the sec-
ondary mass. The algorithm is as follows: The primary
mass starts in a constraint and a constant input Ay is ap-
plied. The system evolves until an instant ¢; € (t,tx41)
where an impulsive input py is applied to correct the ve-
locity of the secondary mass. The procedure is applied
many times as necessary to reach the desired target (m
will be the number of times).

The equations describing the system between two con-
secutive impacts with the proposed control are:

b)) = () 4y (E)A (®)
A .
wa(tepr) = wa(te) + () Ak + awpr Ak + AL (9)
yl(t:_H) = mllyl(t:)+m12y2(t:)+m12AkAk
+mi2pk (10)
yz(t2+1) = m2lyl(t:)+m22y2(t:)+m22AkAk
+ma2pr (11)
_ 1+ 1+
where my; = ﬁ, miz = 1t_|_: ) :7121 = 1_|_6HH, mas =
1— —t; A
T Ak =t — b, ap = PR and Ay = Z&

One remarks from (8) that the control has no effect on
the position of the primary mass because this is a free
particle between collisions. In order to indirectly control
the position of m; the flight time is used. The last im-
pact 1s analyzed to determine the necessary conditions
to attain the fixed point. To bring the position of the
primary mass from z1(t;) to 21(tx41) = 27, the elapsed
time between the last two impacts must be given by:

xi —z1(ty)
Y (tF)

Introducing (12) into (8)-(11) we obtain the system
that provides the form of the controller on (¢4, ¢x41),

AL = (12)

) 3 — xa(ts) — o (E) AL
(A2)2 axhy Ay x;T—7:121(y1(2+) o )+
A% 1 » = B-Pr——— ya(t)
A 1 * yh—morn(tT) yz(t:)

ma2

(13)

Tt can be shown that the controller in (13) guarantees

A, = AZ and 2(t}) = z* = (27 =3 y7 y5)T provided
z(t,; ) satisfies certain conditions as shown below.

Tn the set of equations (13) it is possible to observe
that there exist more states that control inputs (this is an
under-actuated system). However the last two equations
are linearly dependent and the system has a solution if
these equations are identical. We deduce that the next
condition must be satisfied:

yr —muy () _ ys — moryi (tF) (14)

mag

mia

The equation (14) is verified only if ¢ = 0 or
y1(tF) = yi. This means that only for very particu-
lar initial conditions the control scheme brings the tra-
jectory to the target in one collision (i.e. m=1). To
cope with this problem, we define an intermediate state
(7, 23,y , yT) to be attained at ¢, from the initial state
at ¢,_1. The idea 1s choose an intermediate state which
has an existence region that contains the initial states
(@1(te1), a(tum1) m1 (L 1), 92(t5_1)) -

From the above we choose the intermediate state as

follows:
zi(ty) = o
za(ty) = l‘;—
- 15
w(th) = v (15)
w(th) = v

To bring the trajectory from the initial state to the
intermediate state the flight time is:

o —w ()
1= T (16)
Y1 (tn—l)

Introducing (16) into (13) and using only the two first
equations we can obtain the values for A,_; and p,_1
that bring the trajectory from the initial conditions to
the intermediate state. The second equation is not con-
sidered and the velocity for ms is not controlled in this
step. We obtain the control law on ({,_1,%s):

Pr—1
where v1 = l‘;— — 2o(ty—1) — A:_lyg(t:_l) and 5 =

vl —muy (1) — mizya(tF_,).
In the second step, the system is considered on
(toytig1). From (8), z1(tx41) = 27 implies:

2(mizmi—a—1 AY, 73)
mi2(A* )2 (1-2a_; )

(17)
2migy1 =AY 2
mi2A* | (2a_; —1)

* _ .t
Ar=0"0 (18)

Y

To obtain the values for the control inputs, we solve
the first and third equations of (13). Tt follows from the
above choices of intermediate target that (11) and (10)



are equivalent. Hence y7 and 5 are achieved simultane-
ously. One gets from (13):

2(a A* (y3—moy yf——mzzy;)—mﬂ(i;—f;—A* y;'))
(A*)2maz(2a —1)

A
Ps 2-m22(r; —x;—A* y;—)—A* (y; —ma1 yf’—m'zzy;)
A*mgs(2a —1)
(19)

The above developments are led assuming that there is
no impact on the intervals (¢,_1,%;) and (¢.,¢x41). Con-
ditions on ¢;, that is on «y, are given next that guarantee
such behavior.

3.1.1 Calculation of suitable impulse instants ¢;
(viability conditions)

The flight between the two constraints can be divided in
two phases. The two phases will be considered indepen-
dently. The equations governing the system during the
first flight phase (#,;) are given by

n = n) (20)
n(t) = ) (- 1) (21)
() = )+ Akl — ) (22)
wa(t) = wa(t) + ()~ )+ (- ) (23)

In this phase the flight time between two collisions is
given by:

Apni AQ—k + (W) =y () Apnt + (w2(te) — 21(tk)) (24)

= (22(tp) — 21(tp))

where A,y =1, —tg, tp is the possible impact time (non
desired) and (z2(tp) —1(tp)) is the constraint of the non
desired collision.

If t, > t; (which will be satisfied if o and the in-
puts are suitably chosen, as shown later), the dynamical
equations for the second flight phase (;,%541) are

yi(t) yi(t) (25)
wi(t) = wi(tr) + yi ()t — t) (26)
wot) = ya(tf) + A(t—tx) + pr (27)
wa(t) = wa(tr) +va(60)(t— t) +pr(t— 1) (28

A ,
—|—7k(t — t5)?

In this phase the flight time between the constraints
is given by:

AZEE 4 (ams + (1) — ()M
+(@2(te) — 21(tk)) = (22(trtr) — 21 (ths1))

(29)

The equations (24) and (29) are quadratic. With the
two constraints, each of them provides 4 different solu-
tions depending on the impact constraints. This is a
multiple valued problem and it 1s necessary to have a
criterion to select the correct flight time.

flight time criteria The root represents a time inter-
val between two consecutive collisions, it must be real
and positive. A negative root or complex root are not
feasible solutions and should be discarded.

If there exist multiple positive roots, there is a mul-
tiplicity problem that can be resolved only using the
physical interpretation to the solutions. The solutions
without physical meaning can be eliminated regarding
the velocity value after the collision. There is only one
possible sign depending upon the impact constraint. In
this case the evaluation of the velocity gives a test which
successfully eliminates the solutions without physical sig-
nificance. It is important to consider that the multiplic-
ity could be due to an inappropriate given initial state
which does not represent a feasible state of the system.

It 1s noticeable that the form of the solution is given by
the value of the inputs A and p. If one use the criteria
of the flight time, 1t is possible to choose the impact
constraint with an adequate selection of A and p. In this
physical configuration there always exists a solution.

With this criteria, we can state the conditions for the
non-existence of time ¢,. They can be expressed as,

Aphl > ap A (30)

A = A% (31)

(30) expresses that the solution of (24) is larger than
the interval (¢x,%;). (31) means that the only solution of
(29) (assuming that (30) is true) is the desired time flight
time in (24) and (29) for the first and second phases re-
spectively. The two equations displayed above are func-
tions of ai. We can simply find numerically the range
of «ay, satisfying these conditions. This procedure must
be applied to the two steps of the algorithm.

Remark If there were no constraints, it would be pos-
sible to obtain the target in two steps from any initial
condition, that 1s m = 2. However, the viability con-
ditions imply a particular choice of the impulse instant
t; (i.e. of ay), which reduces the size of the closed-loop
basin of attraction. It is clear that if B,, denotes the
basin of attraction for the control with m impacts, then
Bm+1 2O Bn. But it remains to be proved that there ex-
ists M such that By = R* M < +o00. Notice that the
major control difficulty comes from the fact that each



step one has to find a control input U, € R? such that
(see (13))

MUy = Zy, (32)
where M;, € R3*2, U}, and 7;, € R? are straightforwardly
defined from (13), and M} depends nonlinearly on the
state.

The figure 3 depicts a typical closed-loop trajectory
with two steps. Figure 4 shows the set of starting states
(7,23, yF, yF) from which we can reach the desired
target (27,23, y7,v5) = (4.666,3.666,—4.5333, —2.4) ap-
plying a one step constant-impulsive control, and with
y7 = —y;. The depicted domain in the (zs,ys) plane
therefore represents a section of the three dimensional
basin of attraction corresponding to a one-step control.
Notice that since yi" — y;’ > 0 and Agy, > 01t can be
shown that the values of y, and z4 belong to the domain
ef <t +Lyd < -y

] //ﬂq

-2

-0.15 -01 -0.05 0 0.05 0.1 0.15

Figure 3: Constant-impulsive control (phase plane (z =
T1— T2, Y= Y1 — Ya2))-

Figure 4: One step basin of attraction for the constant-
impulsive control (section yi = —y7t)

4 Conclusions and future works

In this paper we have analyzed symmetric periodic mo-
tion of a simple mechanical system with dynamic back-
lash. The study of this problem including all its dy-
namic and non-linear features has been rarely treated in
the control literature despite a lot of interest from the
mechanics and non-linear dynamics community.

We have proposed a constant-impulsive hybrid con-
troller that enlarges the basin of attraction of periodic
orbits locally stable created by a PD controller.

In order to validate the practical applicability of the
proposed control scheme we need to perform a robustness
analysis of the closed-loop system. The main physical
parameters which can affect the performance of the sys-
tem are the coefficient of restitution, the mass ratio and
the clearance length. We assume that the position and
velocity of both the impacting bodies are available at all
times which may not be completely practical. Perhaps
also of limited practical value is the use of ideal impulses.
We continue to study the use of non-impulsive control as
well as the robustness issues.
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