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Abstract— The centroidal momentum of a humanoid robot is
the sum of the individual link momenta, after projecting each
to the robot’s Center of Mass (CoM). Centroidal momentum
is a linear function of the robot’s generalized velocities and
the Centroidal Momentum Matrix is the matrix form of this
function. This matrix has been called both a Jacobian matrix
and an inertia matrix by others. We show that it is actually a
product of a Jacobian and an inertia matrix.

We establish the relationship between the Centroidal Mo-
mentum Matrix and the well-known joint-space inertia matrix.
We present a Transformation Diagram that graphically captures
the inter-relationships of the matrix operators and motion and
momentum variables in Joint Space, CoM Space as well as the
System Space.

The Centroidal Momentum Matrix is a local scaling function
that maps the joint rates to the centroidal momentum. Follow-
ing the concept of the manipulability ellipsoid, we propose the
centroidal momentum ellipsoid that quantifies the momentum
generation ability of the robot. We present a simulation plot
showing the evolution of the singular values of the Centroidal
Momentum Matrix during the walking motion of a humanoid.

Index Terms— momentum matrix, inertia matrix, angular
momentum, linear momentum, matrix properties, centroidal
momentum ellipsoid.

I. MOTIVATION

The use of linear and angular momenta in humanoid robot
control has been the topic of a number of recent research
activities. Robot momenta is increasingly being explored as
an important quantity in gait control [9], [10], [12], [14],
[18], [19], [21], [22] as well as an indicator of balance [1],
[7]. Yet, there is surprisingly little study on the nature
of momenta in the context of humanoid robots which are
floating-base, multibody dynamics systems1. In this paper
we study the structure and properties of linear and angular
momenta of humanoid robots using spatial notation for the
dynamics [4], [6].

The spatial momentum vector of a humanoid robot con-
sists of its linear and angular momenta. While the quantity
of a robot’s linear momentum is an absolute property and
is inherently defined at its CoM, the angular momentum
depends on the reference point at which it is computed.
The aggregate angular momentum of a robot is obtained
by summing up the angular momenta contributed by the
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individual link segments. The centroidal angular momentum
of a robot is the aggregate angular momentum referred to
its Center of Mass (CoM) or centroid. The 6× 1 centroidal
momentum vector hG, which consists of the linear and
centroidal angular momenta of the robot, is related to its
n× 1 joint velocity vector q̇ as:

hG = AG(q) q̇ . (1)

The 6 × n matrix AG is called the Centroidal Momentum
Matrix and is the focus of this paper. We study its properties,
structure and relationships to other quantities. In our formu-
lation, AG(q) contains contributions both from the inter-
segmental joint variables of the robot as well as from the
fictitious joint connecting the inertial frame and the floating
base (detailed in Section II) of the humanoid. Note that
AG(q) is identical to the large matrix in the RHS of Eq. 1
of [10], with only the linear and angular parts interchanged.

The literature contains only a rare mention of matrices
that map joint rates into aggregate momenta of a multibody
dynamic system. In [3] the linear momentum Jacobian is
computed as an intermediate step towards computing what
the authors refer to as a force Jacobian. This formulation
is used for animating articulated figures and does not con-
tain angular momentum. In [15] the “angular momentum
Jacobian” matrix is used to control the flight phase of a
hopping robot. Finally, for resolved momentum control of
humanoid robots, use has been made of “matrices which
indicate how the joint speeds affect the linear momentum and
angular momentum” [10]. Although they are called “inertia
matrices” in this work, these matrices are identical to the
“momentum Jacobian” matrices mentioned before.

Is AG(q) an inertia matrix or a Jacobian matrix? Through
a Transformation Diagram and through computation we will
show that AG(q) is the product of a pure inertia matrix and
a pure Jacobian matrix.

From Eq. 1 we can think of AG(q) as a local scaling func-
tion that maps the joint rates to the centroidal momentum.
Following the concept of the manipulability ellipsoid [25],
we will propose the centroidal momentum ellipsoid that
quantifies the manner in which the joint rates are mapped
to the centroidal momentum. Specific circumstances of gait
and balance may impose specific requirements on the cen-
troidal momentum and a study of the ellipsoid may provide
information on the momentum limits in different directions
of the robot as well as the best ways to achieve them.

The organization of this paper is as follows. First the
velocity and momentum equations for a humanoid robot
are derived using spatial notation. This is followed by a



description of the structure and properties of the Centroidal
Momentum Matrix. A Transformation Diagram containing
the inter-relationships among motion and momentum vari-
ables is next presented. Then, the centroidal momentum
ellipsoid is defined and a brief example given, followed by
conclusions and a description of future work.

II. HUMANOID ROBOT MODEL

In order to develop the dynamic model of a humanoid
robot, the approach taken in [6] for rigid-body systems will
be used. Spatial notation [4], [6] is a concise vector notation
for describing rigid-body velocity, acceleration, inertia, etc.,
using 6D vectors and tensors, and is an integral part of the
approach.

A humanoid can be modeled as a set of N + 1 links
interconnected by N joints, of up to six degrees of freedom
each, forming a tree-structure topology. The motion of the
links are referenced to a fixed base (inertial frame) which
is labeled 0 while the links are labeled from 1 through N .
Numbering of the links may be done in any manner such
that link i’s predecessor toward the root (link 0), indicated
by p(i), is always less than i. Joints in the tree are numbered
such that joint i connects link i to link p(i). A coordinate
frame is attached to each link to provide a reference for
quantities associated with the link.

The relationship between connected links in the tree struc-
ture is described using the general joint model of Roberson
and Schwertassek [23]. An ni × 1 vector q̇i relates the
velocity of link i to the velocity of its predecessor, link p(i),
where ni is the number of degrees of freedom at the joint
connecting the two links. The free modes of the joint are
represented by the 6 × ni matrix Φi, such that the spatial
velocity of link i is given as follows:

vi =
[

ωi

vi

]
= iXp(i) vp(i) + Φi q̇i , (2)

where ωi and vi are the angular and linear velocities of link
i, respectively, as referenced to the link coordinate frame.
iXp(i) is a 6× 6 spatial transform which transforms spatial
motion vectors from p(i) to i coordinates. The matrix Φi

depends on the type of joint [23], [6]. It has full column
rank, as does the orthogonal matrix Φc

i representing the
constrained modes of the joint, such that [Φi Φc

i ] is a basis
of R6 and is invertible.

In order to model a humanoid when in flight, one of the
links is modeled as a floating base (typically the torso) and
numbered as link 1. A fictitious six degree-of-freedom (DoF)
joint is inserted between the floating base and fixed base. In
this case, Φ1 = 16×6 where 16×6 is the identity matrix.
The Denavit-Hartenberg convention is used for single DoF
joints, such that Φi = [0 0 1 0 0 0]T for a revolute joint. The
total number of degrees of freedom in the humanoid is n
where n =

∑
ni. Note that n includes the six degrees of

freedom for the floating base.
The spatial transform iXp(i) may be composed from the

position vector p(i)pi from the origin of coordinate frame
p(i) to the origin of i, and the 3× 3 rotation matrix iRp(i)

which transforms 3D vectors from coordinate frame p(i) to
i:

iXp(i) =
[

iRp(i) 0
iRp(i) S(p(i)pi)T iRp(i)

]
. (3)

The quantity S(p) is the skew-symmetric matrix that satis-
fies S(p) ω = p× ω for any 3D vector ω. It is defined by
the equation

S(p) =

 0 −pz py

pz 0 −px

−py px 0

 . (4)

A. Spatial Momentum

The spatial momentum of each link may be computed
from the spatial velocity as follows (see Fig. 1):

hi =
[

ki

li

]
= Ii vi , (5)

where ki is the angular momentum, li is the linear momen-
tum, and Ii is the spatial inertia for link i. The spatial inertia
may be composed from the mass mi, position vector to the
center of mass (CoM) ci, and 3× 3 rotational inertia Īi, all
relative to coordinate frame i:

Ii =
[

Īi mi S(ci)
mi S(ci)T mi 1

]
, (6)

where
Īi = Ī

cm
i + mi S(ci) S(ci)T , (7)

and Ī
cm
i is the rotational inertia about the CoM. Recall

that if the origin of coordinate frame i is chosen at the
CoM, the off-diagonal blocks mi S(ci) reduce to zero. If, in
addition, the axes of coordinate frame i are oriented along
the principal axes of inertia, Īi becomes a 3 × 3 diagonal
matrix and Ii a 6× 6 diagonal matrix.

i

Gi

vi

ωi

ci

Momentum:
angular: ki = Ii ωi
linear:     li = mi vGi

spatial: hi =
ki
li

Fig. 1. Schematic depiction of a single rigid body: spatial
momentum contains the angular and linear momenta.

B. Global Notation

It is possible to combine the equations for the velocity or
momentum for all the links into a global set of equations
[5]. To do so, composite vectors and matrices are defined,
and these were the starting point of the spatial operator
algebra developed by Rodriguez et al. [24]. Global notation



is useful in developing a system Jacobian which leads to an
expression for the Centroidal Momentum Matrix.

The difference between the velocity of a link and that of
its predecessor may be determined by rearranging Eq. 2:

vi − iXp(i) vp(i) = Φi q̇i . (8)

The relationship between all of the link velocities in the
system v and the joint rates q̇ may be expressed through
the use of an incidence matrix2 P :

P v = Φ q̇ , (9)

where

P ij =

 16×6 : j = i
−iXp(i) : j = p(i)
06×6 : otherwise

and
v =

[
vT

1 , vT
2 , · · ·vT

i , · · ·vT
N

]T
(10)

q̇ =
[
q̇T

1 , q̇T
2 , · · · q̇T

i , · · · q̇T
N

]T
(11)

Φ = diag [Φ1, Φ2, · · ·Φi, · · ·ΦN ] . (12)

Matrix P is sparse, lower-triangular, and easily inverted.
Solving for v in Eq. 9 results in:

v = P−1 Φ q̇ = J q̇ , (13)

where the system Jacobian J is defined to give the relation-
ship between the system velocity and the joint rates3:

J = P−1 Φ . (14)

The elements of the system Jacobian are just the Jacobians
for each of the links:

J =
[
JT

1 , JT
2 , · · ·JT

i , · · ·JT
N

]T

. (15)

The momenta of all the links in the system may be
determined as the product of the system velocity vector v
and the system inertia I; gathering all:

h = I v , (16)

where h is the 6N × 1 system momentum vector:

h =
[
hT

1 , hT
2 , · · ·hT

i , · · ·hT
N

]T

, (17)

and the 6N × 6N system inertia matrix is defined as:

I = diag [I1, I2, · · · Ii, · · · IN ] . (18)

2The elements of a standard incidence matrix are the scalars +1, -1, and
0, not 6× 6 matrices. The incidence matrix here also includes the spatial
transform between link coordinates.

3The system Jacobian is not to be confused with the manipulator Jacobian
in traditional fixed-based manipulators. The system Jacobian is an extension
of the manipulator Jacobian and can contain it as one of its blocks if the
corresponding coordinate frame is located at the task point.

III. STRUCTURE AND PROPERTIES OF
CENTROIDAL MOMENTUM MATRIX

A. Formulation of Centroidal Momentum Matrix

As shown in Eq. 1, the Centroidal Momentum Matrix
gives the relationship between the joint rates and centroidal
momentum. In order to find the relationship between this
matrix and the link inertias and Jacobians, the concept of the
system momentum matrix A is first presented. The system
momentum matrix A gives the relationship between the
system momentum vector and the joint rates: h = A q̇ .

Substituting the expression for the system velocity in
Eq. 13 into Eq. 16, gives:

h = I J q̇ . (19)

From this, and using the definition of the system momentum
matrix, we can write:

A = I J . (20)

The system momentum matrix is just the product of the
system inertia matrix and the system Jacobian. It includes
the momentum matrix for each link and is of size 6N × n:

A =
[

AT
1 , AT

2 , · · ·AT
i , · · ·AT

N

]T
, (21)

with
Ai = Ii J i . (22)

As defined, the spatial momentum of each link hi is
most naturally expressed in its own coordinate system. As
a measure of dynamic stability or for control, it is useful
to combine the momenta for the links by projecting the
momenta to a common coordinate frame. A convenient
frame is one set at the instantaneous CoM or the centroid
of the system G, and whose coordinate axes are parallel
to those of the inertial coordinate frame 0. Noting that the
spatial momentum may be projected as any other force-type
vector [6], the following equation may be used to calculate
the spatial momentum at the CoM of the system (see Fig. 2):

hG =
N∑

i=1

iXT
G hi =

N∑
i=1

iXT
G Ai q̇ . (23)

The centroidal momentum may be expressed as a function
of the system momentum:

hG = XT
G h , (24)

where XG is defined as the projection matrix, for motion
vectors, from centroidal coordinates to link coordinates and
is given as follows:

XG =
[

1XT
G , 2XT

G , · · · iXT
G , · · ·NXT

G

]T
. (25)

The centroidal momentum may also be expressed as a
function of the system momentum matrix A:

hG = XT
G A q̇ . (26)

The Centroidal Momentum Matrix, AG, may then be defined
as:

AG = XT
G A (27)
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Fig. 2. Humanoid robot showing link and centroidal momentum
vectors. The inertial frame is located at O and the robot CoM is
given by cG. The reference frame of link i is located at Oi. The
centroidal momentum hG can be obtained from either Eq. 24 or
Eq. 28.

so that it gives the relationship between the centroidal
momentum and the joint rates:

hG = AG q̇ . (28)

B. Introduction to Transformation Diagram

In order to establish the relationships between the Cen-
troidal Momentum Matrix and other matrices, we have
developed a graphical representation called the Transfor-
mation Diagram. The Transformation Diagram, shown in
Fig. 3, captures the inter-relationships between the vector
variables and transformation matrices related to the Cen-
troidal Momentum Matrix. In doing so it reveals unexplored
transformations between these quantities that can provide
key computational tools and enhanced physical insight. The
Transformation Diagram relates the velocity and momentum
variables in joint space, system space and CoM space.

The n-dimensional joint space4 represents the total num-
ber of degrees of freedom of the robot. This space is
spanned by the robot’s generalized coordinates. The 6N-
dimensional system space hosts the 6 motion components
from each of the N rigid body links of the robot. Finally,
the 6-dimensional CoM space defines a coordinate frame
located at the robot CoM and oriented identical to the inertial
reference frame (0). The CoM space is an example of what
is more commonly known as the task space5.

The Transformation Diagram contains 6 nodes that are
arranged in three rows and two columns. Each node corre-
sponds to a vector – a velocity or a momentum – which
is denoted in lowercase bold. The three rows correspond,

4Also called the configuration space.
5Also called the operational space [11].

Transformation Diagram

(6-dim)

JT

XG
T

Joint Space
(or, Configuration Space)

System Space

CoM Space
(or, Task Space)

(6N-dim)

(n-dim)

H 

A 

I 
A

G = X
G TA 

IG

J = P-1Φ

hJ

hv

vG hG

XG

q

Fig. 3. Transformation Diagram showing the inter-relationships
among the velocities and momenta of a robot. These vector
quantities can be expressed in joint space, system space, or the
CoM space of the robot. The matrices representing the linear
transformations between velocities and momenta in different spaces
are also shown in this diagram.

from top to bottom, to joint space, system space and CoM
space, respectively. The joint space contains q̇ and hJ , the
system space contains v and h, and the CoM space contains
vG and hG. The left column contains velocity vectors and
the right column contains momenta. The mapping between
two vectors, shown as a directed line between two nodes,
is represented by a matrix, which is denoted in uppercase
bold.

The Transformation Diagram contains three types of trans-
formations, which we call horizontal, vertical and diagonal.
A horizontal transformation is represented by a square
inertia matrix: it occurs within the same space and it maps
a velocity vector to a momentum vector. Eq. 16 is a known
example of a horizontal transformation within the system
space. The mapping from q̇ to hJ , given by

hJ = H q̇ , (29)

is the horizontal transformation within the joint space. H
is called the joint-space inertia matrix which is well-known
from the standard equations of motion for a robot6. The
generalized momenta hJ , which is also called the canonical
momenta [20], has not been exploited much for humanoid
analysis and control, except in space robotics [16] and
collision detection [2].

Within the CoM space, the inertia matrix IG transforms
the velocity vector vG according to

hG = IG vG . (31)

6The equations of motion for an n-dof robot can be expressed as:

τ = H(q) q̈ + C(q, q̇) q̇ + τg(q) , (30)

where H is the n×n symmetric, positive-definite joint-space inertia matrix,
C is an n×n matrix such that C q̇ is the vector of Coriolis and centrifugal
terms (collectively known as velocity product terms); and τg is the vector
of gravity terms.



where hG is the centroidal momentum. IG is called the cen-
troidal composite-rigid-body inertia (CCRBI) matrix [13].

A vertical transformation is represented by a non-square
Jacobian or spatial transformation matrix: it relates two
velocity or two momentum vectors, but the transformation
takes place between two different spaces. The transformation
direction for a vertical transformation is not obvious. One
direction is typically favored and well-posed, whereas the
reverse direction might involve the inversion of a non-
square matrix with the associated complexity. The vertical
transformations corresponding to Eq. 13 and Eq. 24 are
shown at the top left and bottom right, respectively, of the
Transformation Diagram.

Finally, a diagonal transformation relates two dissimi-
lar vectors between two different spaces. The matrices A
(Eq. 21) and AG (Eq. 27) fall in this category. These
non-square transformation matrices map q̇ to h and hG,
respectively.

The Transformation Diagram clearly brings out the sim-
ilarities and differences between H and AG. While H is
a pure inertia matrix representing a velocity → momentum
mapping within the same space, the source and destination
spaces for AG are different. H and AG are both directly
related to the system momentum matrix A and the relation-
ships can be obtained from the Transformation Diagram:

H = JT A (32)

and
AG = XT

G A . (33)

C. Further Exploration with Transformation Diagram
The Transformation Diagram contains two vertical trans-

formations (at top right and bottom left) that were not
encountered before. The corresponding equations are

hJ = JT h (34)

and
v = XG vG . (35)

In order to derive Eq. 34 we will assume that kinetic
energy is conserved between the joint space and the system
space. In these two spaces, kinetic energy is expressed as:

KEJ =
1
2
q̇T H q̇ and (36)

KES =
1
2
vT I v . (37)

Assuming KEJ = KES and using Eqs. 29 and 16 we get

q̇T hJ = q̇T JT h (38)

in which we have also made use of the fact that v = J q̇
(Eq. 13). If Eq. 38 is to be satisfied for all values of q̇,
Eq. 34 must also be satisfied.7

7There is an indirect, but more rigorous, way of attaining this equation
which involves accelerations and forces. In a redundant system kinetic
energy is not conserved between two spaces, in general. A redundant
manipulator may have a large joint-space kinetic energy but zero task-space
kinetic energy.

It is revealing to identify the two primary ways in which
q̇ can be mapped into hJ . The direct route q̇ → hJ is given
in Eq. 29. A second route progresses counterclockwise as
follows: q̇ → v → h → hJ and is given by hJ = JT I J q̇.
On equating the two routes, we can obtain the important
relationship:

H = JT I J . (39)

In the same way, by traveling from vG to hG in two different
ways: hG = IG vG and hG = XT

G I XG vG, we can
establish another useful relationship

IG = XT
G I XG . (40)

Although the above equation is a mathematically straight-
forward congruent transformation, the nature of XG has
not been fully described yet. So far we have assumed the
existence of a CoM coordinate “frame” with its origin at the
instantaneous robot CoM and its axes orientation identical
to that of the inertial frame. Although this description is
sufficient to characterize the transformation XT

G : h → hG

given on the bottom right leg of the Transformation Diagram,
the transformation of the bottom left leg, however, is not
fully understood. In particular, what system space velocities
are obtained through the transformation XG : vG → v?
This is what we will discuss in the next section.

D. Rotational velocity of the CoM “Frame”

The CoM space, depicted in the third row of the Trans-
formation Diagram, is a specific example of what is more
generally known as the task space. For a manipulator robot
the frame associated with the task space is rigidly attached
to the end effector. The CoM frame, on the other hand,
is purely computational and often floats in space. More
importantly, although the location of the CoM frame origin
can be uniquely computed, there is no physical meaning to
its orientation. We had earlier assumed that the CoM frame
is oriented identical to the inertial frame. Aside from the
fact that our particular choice simplifies the calculations, the
choice is nevertheless adhoc and without any known physical
grounding. Regardless of the lack of a physically meaningful
rotation, the CoM frame is a justifiable frame for our use,
mainly due to the importance of its location, with direct
significance in balance [7], [22].

Once we know the location of the CoM, we can uniquely
compute XT

G as described before. Next, we can compute the
CCRBI (see Eq. 31) using Eq. 40. Then, the CoM velocity
vG corresponding to the computed IG is obtained through
the relationship

vG = I−1
G hG , (41)

where the linear portion of vG corresponds to the linear
CoM velocity. The angular portion ωG of vG is then the
instantaneous rotational velocity that the CoM frame is to
have for a rigid body of instantaneous inertia IG to possess
the centroidal momentum hG. ωG can be thought of as an
“average velocity” of the humanoid. Another approach to



defining an “average velocity” of multibody systems can be
found in [26].

What is the nature of the transformation v = XG vG

then? The only non-trivial solution is the case where all of
the links are moving with the same spatial velocity when
projected to a common point, which in this case is G. If
the links are all moving with the same velocity, one way of
doing this is to fix them relative to each other. That is, all
joint velocities are set to zero except for the floating base
joint. In this case, IG is simply the CCRBI.

We note that a computation of the fictitious centroidal
angular velocity from inverse inertia and centroidal angular
momentum was previously suggested in [15] and [22].

IV. CENTROIDAL MOMENTUM ELLIPSOID

The Centroidal Momentum Matrix maps the robot joint
rates to the centroidal momentum. Following the popular
concept of the manipulability ellipsoid [25], which quan-
tifies the generation of task space velocities, we can also
propose the centroidal momentum ellipsoid. Similar to the
manipulability index, a compact quantitative measure of a
robot’s ability to generate centroidal momentum can then be
given by the volume of the ellipsoid [17] as:

w ,
√

det{AG(q) AT
G(q)}. (42)

Assuming a singular value representation of AG(q) of the
standard form, AG(q) = U Σ V T , one can show that

w =
√

det(Σ ΣT ) = σ1σ2σ3 . . . σ6 (43)

where the σi-s are the singular values of AG(q). It is well
known that while q̇ satisfies ‖q̇‖ = 1, hG takes values on a
hyper-ellipsoid. The principal axes of the ellipsoid are σiui

for i = 1, . . . 6, where ui is the ith column vector of the
orthogonal matrix U . A study of the ellipsoid may provide
information on the robot’s momentum limits along different
directions as well as the best means to achieve them.

Due to visualization issues and scale disparities it is cus-
tomary to construct two different ellipsoids corresponding
to the translational and rotational portions of the matrix.
We have also separated the linear and angular momentum
portions of the Centroidal Momentum Matrix. Consequently,
the corresponding ellipsoids separately represent the robot’s
ability to generate linear and angular momenta at different
configurations. Each portion results in 3 singular values.

Our simulation efforts, such as shown in Fig. 4, are
ongoing. In Fig. 5 we present the evolution of the three
singular values of the linear momentum ellipsoid for the
walking motion of a robot. It is remarkable that magnitudes
of the singular values are so close.

The centroidal momentum ellipsoid can find use in a
number of applications. As an example, it may be valuable
to look at the ellipsoid while a humanoid is raising or
lowering its body or extending its arms, to determine its
ability to regulate its movement with actuators that have
speed limitations.

Fig. 4. Centroidal Momentum Matrix ellipsoid shown for a
humanoid during a walking motion.
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Fig. 5. Evolution of three singular values of the centroidal
momentum matrix (only the linear portion) during the walking
motion of a humanoid.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have derived the expressions for the
centroidal momentum of a humanoid robot using spatial no-
tation. The Centroidal Momentum Matrix is the local linear
function that maps the robot joint rates to the centroidal
momentum. We have demonstrated that this matrix is the
product of an inertia and a Jacobian matrix.

We developed the Transformation Diagram that graph-
ically captures the relationships between the velocity and
momenta variables of a robot – in joint space, CoM space,
as well as the system space. The Transformation Diagram
is also helpful in identifying relationships between the
transformation matrices.

Next we introduced the centroidal momentum ellipsoid
which, similar to the manipulability ellipsoid of a robot, can



quantitatively indicate the ability of a robot to generate cen-
troidal momentum in a certain direction. We demonstrated
this in one simulation example of a humanoid during a
walking motion.

For a deeper understanding of the momentum properties
of a robot and for practical application, several questions
need to be addressed in the future. We will develop an
efficient computational algorithm to calculate the Centroidal
Momentum Matrix. A number of poorly understood quan-
tities and mapping directions were revealed during the
construction of the Transformation Diagram that need to
be explored. Finally, analysis of the centroidal momentum
ellipsoid will be explored to characterize the momentum
capability of a humanoid robot with different configurations
of the arms and legs during a variety of movements.
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